Project Icon

cornac

多模态推荐系统比较框架

Cornac是一个多模态推荐系统比较框架,支持文本、图像等辅助数据。它便于快速实验和实现新模型,兼容TensorFlow、PyTorch等库。Cornac实现了协同过滤、内容推荐等多种算法,支持高效近似最近邻搜索。框架还提供简单的模型部署方式,有助于构建推荐系统应用。

Cornac

Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxiliary data (e.g., item descriptive text and image, social network, etc). Cornac enables fast experiments and straightforward implementations of new models. It is highly compatible with existing machine learning libraries (e.g., TensorFlow, PyTorch).

Cornac is one of the frameworks recommended by ACM RecSys 2023 for the evaluation and reproducibility of recommendation algorithms.

Quick Links

Website | Documentation | Tutorials | Examples | Models | Datasets | Paper | Preferred.AI

.github/workflows/python-package.yml CircleCI AppVeyor Codecov Docs
Release PyPI Conda Conda Recipe Downloads
Python Conda Platforms License

Installation

Currently, we are supporting Python 3. There are several ways to install Cornac:

  • From PyPI (recommended):

    pip3 install cornac
    
  • From Anaconda:

    conda install cornac -c conda-forge
    
  • From the GitHub source (for latest updates):

    pip3 install Cython numpy scipy
    pip3 install git+https://github.com/PreferredAI/cornac.git
    

Note:

Additional dependencies required by models are listed here.

Some algorithm implementations use OpenMP to support multi-threading. For Mac OS users, in order to run those algorithms efficiently, you might need to install gcc from Homebrew to have an OpenMP compiler:

brew install gcc | brew link gcc

Getting started: your first Cornac experiment

Flow of an Experiment in Cornac

import cornac
from cornac.eval_methods import RatioSplit
from cornac.models import MF, PMF, BPR
from cornac.metrics import MAE, RMSE, Precision, Recall, NDCG, AUC, MAP

# load the built-in MovieLens 100K and split the data based on ratio
ml_100k = cornac.datasets.movielens.load_feedback()
rs = RatioSplit(data=ml_100k, test_size=0.2, rating_threshold=4.0, seed=123)

# initialize models, here we are comparing: Biased MF, PMF, and BPR
mf = MF(k=10, max_iter=25, learning_rate=0.01, lambda_reg=0.02, use_bias=True, seed=123)
pmf = PMF(k=10, max_iter=100, learning_rate=0.001, lambda_reg=0.001, seed=123)
bpr = BPR(k=10, max_iter=200, learning_rate=0.001, lambda_reg=0.01, seed=123)
models = [mf, pmf, bpr]

# define metrics to evaluate the models
metrics = [MAE(), RMSE(), Precision(k=10), Recall(k=10), NDCG(k=10), AUC(), MAP()]

# put it together in an experiment, voilà!
cornac.Experiment(eval_method=rs, models=models, metrics=metrics, user_based=True).run()

Output:

MAERMSEAUCMAPNDCG@10Precision@10Recall@10Train (s)Test (s)
MF0.74300.89980.74450.05480.07610.06750.04630.131.57
PMF0.75340.91380.77440.06710.09690.08130.06392.181.64
BPRN/AN/A0.86950.10420.15000.11100.11953.741.49

Model serving

Here, we provide a simple way to serve a Cornac model by launching a standalone web service with Flask. It is very handy for testing or creating a demo application. First, we install the dependency:

$ pip3 install Flask

Supposed that we want to serve the trained BPR model from previous example, we need to save it:

bpr.save("save_dir", save_trainset=True)

After that, the model can be deployed easily by running Cornac serving app as follows:

$ FLASK_APP='cornac.serving.app' \
  MODEL_PATH='save_dir/BPR' \
  MODEL_CLASS='cornac.models.BPR' \
  flask run --host localhost --port 8080

# Running on http://localhost:8080

Here we go, our model service is now ready. Let's get top-5 item recommendations for the user "63":

$ curl -X GET "http://localhost:8080/recommend?uid=63&k=5&remove_seen=false"

# Response: {"recommendations": ["50", "181", "100", "258", "286"], "query": {"uid": "63", "k": 5, "remove_seen": false}}

If we want to remove seen items during training, we need to provide TRAIN_SET which has been saved with the model earlier, when starting the serving app. We can also leverage WSGI server for model deployment in production. Please refer to this guide for more details.

Efficient retrieval with ANN search

One important aspect of deploying recommender model is efficient retrieval via Approximate Nearest Neighbor (ANN) search in vector space. Cornac integrates several vector similarity search frameworks for the ease of deployment. This example demonstrates how ANN search will work seamlessly with any recommender models supporting it (e.g., matrix factorization).

Models

The table below lists the recommendation models/algorithms featured in Cornac. Examples are provided as quick-start showcasing an easy to run script, or as deep-dive explaining the math and intuition behind each model. Why don't you join us to lengthen the list?

YearModel and PaperTypeEnvironmentExample
2024Hypergraphs with Attention on Reviews (HypAR), docs, paperHybrid / Sentiment / Explainablerequirements, CPU / GPUquick-start
2022Disentangled Multimodal Representation Learning for Recommendation (DMRL), docs, paperContent-Based / Text & Imagerequirements, CPU / GPUquick-start
2021Bilateral Variational Autoencoder for Collaborative Filtering (BiVAECF), docs, paperCollaborative Filtering / Content-Basedrequirements, CPU / GPUquick-start, deep-dive
Causal Inference for Visual Debiasing in Visually-Aware Recommendation (CausalRec), docs, paperContent-Based / Imagerequirements, CPU / GPUquick-start
Explainable Recommendation with Comparative Constraints on Product Aspects (ComparER), docs, paperExplainableCPUquick-start
2020Adversarial Multimedia Recommendation (AMR), docs, paperContent-Based / Imagerequirements, CPU / GPUquick-start
Hybrid Deep Representation Learning of Ratings and Reviews (HRDR), docs, paperContent-Based / Textrequirements, CPU / GPUquick-start
LightGCN: Simplifying and Powering Graph Convolution Network, docs, paperCollaborative Filteringrequirements, CPU / GPUquick-start
Predicting Temporal Sets with Deep Neural Networks (DNNTSP), docs, paperNext-Basketrequirements, CPU / GPUquick-start
Recency Aware Collaborative Filtering (UPCF), docs, paperNext-Basketrequirements, CPUquick-start
Temporal-Item-Frequency-based User-KNN (TIFUKNN), docs, paperNext-BasketCPUquick-start
Variational Autoencoder for Top-N Recommendations (RecVAE), docs, paperCollaborative Filteringrequirements, CPU / GPUquick-start
2019Correlation-Sensitive Next-Basket Recommendation (Beacon), docs, paperNext-Basketrequirements, CPU / GPUquick-start
[Embarrassingly Shallow Autoencoders for Sparse Data
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号