Project Icon

Splade_PP_en_v1

ONNX稀疏向量模型助力高性能文本检索

Splade_PP_en_v1是一个文本分类和相似度搜索模型的ONNX实现版本。模型基于FastEmbed框架运行,可将输入文本转换为稀疏向量表示,适用于文本检索和相似度计算。项目支持Python API接口调用,可进行批量文本处理,采用Apache-2.0开源许可证。

timely-arctic-small - 语义相似度分析模型:句子向量化工具
GithubHuggingfaceSnowflake/snowflake-arctic-embed-s开源项目数据集文本分类模型相似性函数语义相似性
基于Sentence Transformers的模型,采用Snowflake/snowflake-arctic-embed-s进行语义相似度分析。模型将句子转化为384维向量,适用于语义搜索、同义词挖掘、文本分类和聚类等领域。使用余弦相似度作为基本算法,支持最长512个token的序列,训练与评估数据集分别包含55736与1000条样本,提升精确度。更多技术细节与用法,请参考GitHub和相关文档。
sparseml - 神经网络优化工具,简化代码实现高效稀疏模型
GithubSparseML开源项目推理优化模型优化神经网络稀疏化
SparseML是开源模型压缩工具包,使用剪枝、量化和蒸馏算法优化推理稀疏模型。可导出到ONNX,并与DeepSparse结合,在CPU上实现GPU级性能。适用于稀疏迁移学习和从零开始的稀疏化,兼容主流NLP和CV模型,如BERT、YOLOv5和ResNet-50,实现推理速度和模型大小的显著优化。
fasttext-en-vectors - 多语言词向量学习和文本分类开源库
GithubHuggingfacefastText开源项目文本分类机器学习模型自然语言处理词向量
fastText是一个开源轻量级库,专注于词向量学习和文本分类。它支持157种语言,可在普通硬件上快速训练,并提供预训练模型。fastText适用于文本分类、语言识别等任务,从实验到生产均可使用。该库简单易用,能在短时间内处理海量文本,是自然语言处理领域的高效工具。
bge-base-zh-v1.5 - 文本低维向量映射提升中文检索与分类效率
FlagEmbeddingGithubHuggingface句子相似性向量检索对比学习嵌入模型开源项目模型
FlagEmbedding是一个开源项目,可将文本转换为低维密集向量,用于多种任务,如检索、分类和语义搜索。bge-base-zh-v1.5版本优化了相似度分布,没有指令也能提升检索能力。支持中文和英文的处理,并与大型语言模型(LLM)无缝集成,bge-reranker交叉编码器模型为文档重新排名提供高精度结果。此外,最新的LLM-Embedder满足多样化检索增强需求,使用户在大数据环境中更高效地完成检索和分类。
clip-ViT-B-32-vision - 图像分类与相似性搜索的简便工具
FastEmbedGithubHuggingfaceONNXimage-classification开源项目模型模型推理视觉相似搜索
clip-ViT-B-32模型的ONNX版本,支持图像分类和相似性搜索。利用FastEmbed库,用户能够快速处理图像嵌入,该模型在视觉任务中表现出色,适用于多种应用场景。
similarities - 文本和图像相似度计算与语义搜索的高效工具
CLIPGithubsimilarities图像相似度开源项目文本相似度语义搜索
该工具包提供多种文本和图像相似度计算及语义匹配算法,支持高效处理亿级数据。主要功能包含文本相似度计算、文本搜索、图文匹配、图像搜索等多种算法。项目采用Python3开发,支持命令行操作,基于PyTorch和FastAPI等技术,可实现多语言环境下的高效向量表示及检索,开箱即用。
llm-embedder - FlagEmbedding 高性能文本向量化模型助力信息检索与语义搜索
FlagEmbeddingGithubHuggingface开源项目微调文本嵌入检索增强模型重排模型
FlagEmbedding项目开发了一系列高性能文本向量化模型,可将文本转化为低维密集向量。这些模型在信息检索、文本分类、聚类和语义搜索等任务中表现出色,也可用于构建大语言模型的向量数据库。项目包含BGE和LLM-Embedder等多个中英双语模型,在MTEB和C-MTEB基准测试中均取得第一。FlagEmbedding还提供模型微调代码和性能评估工具,便于进行定制化训练和测试。
bge-large-en-v1.5-quant - 量化ONNX模型增强句子编码效率和性能
DeepSparseGithubHuggingfaceSparsify嵌入开源项目推理模型量化
该量化ONNX模型旨在利用DeepSparse加速bge-large-en-v1.5嵌入模型,提升句子编码效率。通过Sparsify实现的INT8量化和深度稀疏技术,在标准笔记本和AWS实例上分别实现了4.8倍和3.5倍的延迟性能改善。在多个数据集的测试中,该模型在分类和STS任务中展现出较高的编码效率。结合DeepSparse和ONNX技术栈,该模型适用于需要高效自然语言处理的应用场景。
splade-cocondenser-selfdistil - SPLADE模型在段落检索任务中的优化应用
GithubHuggingfaceSPLADE开源项目文档检索模型知识蒸馏神经信息检索稀疏模型
SPLADE CoCondenser SelfDistil是一个专为段落检索设计的模型,结合了CoCondenser和自蒸馏技术。在MS MARCO开发集上,该模型展现出优秀性能,MRR@10达37.6,R@1000达98.4。通过整合查询扩展、文档扩展和词袋方法,并采用硬负样本采样和知识蒸馏技术,有效提升了稀疏神经IR模型的效果。这一模型为信息检索和自然语言处理领域的研究提供了有力工具。
NoInstruct-small-Embedding-v0 - 小型嵌入模型在MTEB基准测试中展现卓越性能
GithubHuggingfacesentence-transformers信息检索嵌入模型开源项目文本分类模型相似度计算
NoInstruct-small-Embedding-v0是一个小型嵌入模型,在MTEB基准测试中展现出优秀性能。该模型在文本相似度、分类和检索任务上表现突出,特别是在亚马逊评论分类中。基于sentence-transformers库开发,支持特征提取、句子相似度计算等多种NLP任务。在多个数据集上的出色表现体现了其在实际应用中的潜力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号