Project Icon

LLMRank

大语言模型在推荐系统排序中的应用与挑战

LLMRank项目聚焦大语言模型在推荐系统排序中的潜力。研究采用指令跟随方法,将用户行为历史和候选项整合到自然语言模板中。实验结果显示,大语言模型具备强大的零样本排序能力,但在处理用户历史顺序信息时面临挑战。通过设计特定提示策略,可有效提升排序表现。此外,项目还深入分析了排序过程中的偏见问题,并提出了相应的解决方案。

chinese-llm-benchmark - 中文大模型性能基准测试与排行榜
CLiBGithub中文大模型开源模型开源项目能力排行评测榜单
项目持续更新,目前已评测113个中文大模型,包括GPT-4、文心一言、通义千问等商用模型和百川、Qwen、GLM等开源模型。评测维度全面,涵盖分类、信息抽取、阅读理解、数据分析、中文编码效率等。提供综合能力和细分能力排行榜,并开放原始评测数据。为选择和研究中文大模型提供客观依据。
Awesome-LLM-Survey - 调查大语言模型的最新研究进展,包括指令调整、人类对齐和多模态
Awesome-LLM-SurveyGithubLLM人工智能大规模语言模型开源项目研究报告
该项目收录了大语言模型(LLM)的最新研究,涵盖了指令调整、人类对齐、代理、多模态等多个方面。研究者可以通过提交拉取请求更新他们的论文信息,参与社区的建设。项目内容详尽记录了LLM的训练、提示工程及其在各领域的应用挑战,为学术界和业界提供丰富的参考素材。用户可以通过该项目深入了解LLM的关键功能、主要优势及最新技术动态。
MobileLLM - 轻量高效的移动设备语言模型
AI模型GithubMobileLLM开源项目深度学习神经网络语言模型
MobileLLM是一个针对移动设备优化的大型语言模型项目。该模型通过SwiGLU激活函数、深窄架构、嵌入共享和分组查询注意力等技术,在亿级参数规模下实现了高性能。MobileLLM在零样本常识推理任务中表现出色,不仅在125M和350M参数规模上超越了现有最先进模型,还成功扩展至600M、1B和1.5B参数规模,展示了其在移动设备应用中的潜力。
RAG-Retrieval - 使用RAG-Retrieval全面提升信息检索效率与精度
GithubRAG-Retrieval开源项目微调排序模型推理检索模型
RAG-Retrieval项目通过统一方式调用不同RAG排序模型,支持全链路微调与推理。其轻量级Python库扩展性强,适应多种应用场景,提升排序效率。更新内容包括基于LLM监督的微调及其Embedding模型的MRL loss性能提升。
bge-reranker-v2-gemma - 多语言支持的轻量级文本重排工具
FlagEmbeddingGithubHuggingfaceReranker多语言开源项目模型模型列表相似性评分
bge-reranker-v2-gemma项目提供了一种轻量级的多语言文本重排器,具备快速推理能力和出色的英语及多语言应用表现。通过输入查询和文档,模型能够输出相似度得分,并将结果映射为0到1之间的值。用户可以根据具体需求选择适合的模型,适用于多语言环境下的高效文本重排。该工具提供性能和效率的优化选项,便于模型的迭代与升级。
LLM2Vec-Meta-Llama-3-8B-Instruct-mntp - 基于大语言模型的文本编码器实现语义检索与文本嵌入
GithubHuggingfaceLLM2Vec开源项目文本编码机器学习模型语义相似度语言模型
LLM2Vec项目将解码器型大语言模型转换为文本编码器。项目采用双向注意力机制、掩码token预测和无监督对比学习方法,用于文本嵌入和语义相似度计算。通过Python接口实现文本理解和检索功能,支持自定义指令查询,可进行模型微调以提升性能。
bge-reranker-v2-m3 - 多语言重排模型优化检索性能
FlagEmbeddingGithubHuggingface多语言开源项目文本分类模型语义相关性重排序模型
bge-reranker-v2-m3是基于bge-m3开发的轻量级多语言重排模型。该模型部署简单,推理迅速,支持多语言处理。它能直接输出查询与文档的相关性分数,适用于多种检索场景。在BEIR、CMTEB等评测中表现出色,可有效提升检索系统效果。模型提供多个版本,可根据需求选择。
Recommender_System - 推荐系统全面指南:从理论基础到工业实践
GithubGolangTensorFlow召回开源项目排序推荐系统
本项目系统介绍工业级推荐系统的理论知识,包括召回、排序、特征交叉和用户行为序列建模等核心环节。内容涵盖基于TensorFlow2的模型训练,以及高性能、高并发、高可用的Golang推理微服务实现。同时提供Scikit-learn和TensorFlow编程基础,为推荐系统学习者提供全面的知识体系和实践指导。
mlc-llm - 通用大语言模型高性能部署引擎
AI模型优化GithubMLC LLMMLCEngine开源项目机器学习编译器高性能部署
MLC LLM是一款用于大语言模型的高性能部署引擎,支持用户在各种平台上开发、优化和部署AI模型。核心组件MLCEngine通过REST服务器、Python、JavaScript、iOS和Android等接口提供OpenAI兼容的API,支持AMD、NVIDIA、Apple和Intel等多种硬件平台。项目持续优化编译器和引擎,与社区共同发展。
Awesome-LLM-Prompt-Optimization - 大型语言模型提示词优化技术与研究前沿总览
GithubLLM人工智能开源项目提示优化机器学习自动化
本项目收录了大型语言模型(LLM)提示词优化领域的前沿研究论文。内容涵盖LLM优化、微调、编程、人类反馈、集成学习、强化学习、无梯度方法、上下文学习和贝叶斯优化等多个研究方向。项目旨在为研究人员提供全面的LLM提示词优化资源,助力推动该领域发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号