Project Icon

Retrieval-based-Voice-Conversion-WebUI

开源AI变声框架 实现实时变声和快速模型训练

Retrieval-based-Voice-Conversion-WebUI是一个基于VITS的开源变声框架。该项目支持实时变声和快速模型训练,只需少量数据即可生成高质量变声模型。框架提供多语言界面和跨平台支持,并配有详细教程。项目采用检索式方法替换输入源特征,有效防止音色泄漏。支持在中低配置GPU上快速训练,并可通过模型融合调整音色。WebUI界面简洁直观,内置UVR5模型便于人声分离。采用InterSpeech2023-RMVPE算法提取音高,性能出色且资源占用低。该框架支持多种硬件加速,适用于不同用户需求,是一个功能丰富且操作简便的AI变声工具。

基于检索的语音转换Web界面

一个基于VITS的简单易用的变声框架

madewithlove


Open In Colab Licence Huggingface

Discord

更新日志 | 常见问题解答 | AutoDL·5毛钱训练AI歌手 | 对照实验记录 | 在线演示

English | 中文简体 | 日本語 | 한국어 (韓國語) | Français | Türkçe | Português

底模使用接近50小时的开源高质量VCTK训练集训练,无版权方面的顾虑,请大家放心使用

请期待RVCv3的底模,参数更大,数据更大,效果更好,基本持平的推理速度,需要训练数据量更少。

训练推理界面实时变声界面
go-web.batgo-realtime-gui.bat
可以自由选择想要执行的操作。我们已经实现端到端170ms延迟。如使用ASIO输入输出设备,已能实现端到端90ms延迟,但非常依赖硬件驱动支持。

简介

本仓库具有以下特点

  • 使用top1检索替换输入源特征为训练集特征来杜绝音色泄漏
  • 即便在相对较差的显卡上也能快速训练
  • 使用少量数据进行训练也能得到较好结果(推荐至少收集10分钟低底噪语音数据)
  • 可以通过模型融合来改变音色(借助ckpt处理选项卡中的ckpt-merge)
  • 简单易用的网页界面
  • 可调用UVR5模型来快速分离人声和伴奏
  • 使用最先进的人声音高提取算法InterSpeech2023-RMVPE根绝哑音问题。效果最好(显著地)但比crepe_full更快、资源占用更小
  • A卡I卡加速支持

点此查看我们的演示视频 !

环境配置

以下指令需在Python版本大于3.8的环境中执行。

Windows/Linux/MacOS等平台通用方法

下列方法任选其一。

1. 通过pip安装依赖

  1. 安装Pytorch及其核心依赖,若已安装则跳过。参考自: https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
  1. 如果是win系统 + Nvidia Ampere架构(RTX30xx),根据#21的经验,需要指定pytorch对应的cuda版本
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
  1. 根据自己的显卡安装对应依赖
  • N卡
pip install -r requirements.txt
  • A卡/I卡
pip install -r requirements-dml.txt
  • A卡ROCM(Linux)
pip install -r requirements-amd.txt
  • I卡IPEX(Linux)
pip install -r requirements-ipex.txt

2. 通过poetry来安装依赖

安装Poetry依赖管理工具,若已安装则跳过。参考自: https://python-poetry.org/docs/#installation

curl -sSL https://install.python-poetry.org | python3 -

通过Poetry安装依赖时,python建议使用3.7-3.10版本,其余版本在安装llvmlite==0.39.0时会出现冲突

poetry init -n
poetry env use "path to your python.exe"
poetry run pip install -r requirments.txt

MacOS

可以通过run.sh来安装依赖

sh ./run.sh

其他预模型准备

RVC需要其他一些预模型来推理和训练。 你可以从我们的Hugging Face space下载这些模型。

1. 下载资源文件

以下是RVC所需的所有预训练模型和其他文件的清单。你可以在tools文件夹中找到下载它们的脚本。

  • ./assets/hubert/hubert_base.pt

  • ./assets/pretrained

  • ./assets/uvr5_weights

如果想使用v2版本模型,还需要额外下载

  • ./assets/pretrained_v2

2. 安装 ffmpeg

如果已安装ffmpeg和ffprobe,可以跳过此步骤。

Ubuntu/Debian 用户

sudo apt install ffmpeg

MacOS 用户

brew install ffmpeg

Windows 用户

下载后放在根目录。

3. 下载 rmvpe 人声音高提取算法所需文件

如果你想使用最新的RMVPE人声音高提取算法,需要下载音高提取模型参数并放在RVC根目录。

下载 rmvpe 的 dml 环境(可选,适用于AMD/Intel显卡用户)

4. AMD显卡Rocm(可选,仅适用于Linux)

如果你想在Linux系统上使用AMD的Rocm技术运行RVC,请先在这里安装所需驱动。

Arch Linux用户可以使用pacman安装所需驱动:

pacman -S rocm-hip-sdk rocm-opencl-sdk

对于某些型号的显卡(如RX6700XT),可能需要额外设置以下环境变量:

export ROCM_PATH=/opt/rocm
export HSA_OVERRIDE_GFX_VERSION=10.3.0

同时确保你的当前用户属于rendervideo用户组:

sudo usermod -aG render $USERNAME
sudo usermod -aG video $USERNAME

开始使用

直接启动

使用以下命令启动WebUI

python infer-web.py

如果之前使用Poetry安装依赖,可以通过以下方式启动WebUI

poetry run python infer-web.py

使用整合包

下载并解压RVC-beta.7z

Windows 用户

双击go-web.bat

MacOS 用户

sh ./run.sh

对于需要使用IPEX技术的Intel显卡用户(仅Linux)

source /opt/intel/oneapi/setvars.sh

参考项目

感谢所有贡献者的努力

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号