Project Icon

roberta-base-on-cuad

智能合同审查模型基于CUAD数据集 提升法律文档分析效率

roberta-base-on-cuad是一个基于RoBERTa架构的法律文档问答模型,在CUAD数据集上训练。该模型支持数字化和扫描版合同的智能分析,可帮助法律从业者和非专业人士更高效地理解和审查合同。模型在RoBERTa-base基础上将AUPR评分提升至46.6%。项目采用MIT许可证,提供模型调用接口,便于集成到合同审查应用中。

stsb-roberta-base - 基于RoBERTa的句对语义相似度预测模型
GithubHuggingfaceSentenceTransformers交叉编码器开源项目模型模型训练自然语言处理语义相似度
stsb-roberta-base是一个基于SentenceTransformers的Cross-Encoder模型,专门用于预测句对语义相似度。该模型在STS benchmark数据集上训练,可为句对相似性给出0到1之间的分数。模型支持通过sentence_transformers库或Transformers的AutoModel类调用,为NLP任务提供语义分析功能。模型采用Apache-2.0开源许可,使用简单,只需几行代码即可实现句对相似度预测。它不仅可用于语义相似度任务,还可应用于问答系统、文本匹配等多种NLP场景,为开发者提供了便捷的语义分析解决方案。
stackoverflow-roberta-base-sentiment - 软件工程文本情感分析的RoBERTa模型
GithubHuggingfaceRoBERTaStackOverflow开源项目情感分析模型自然语言处理软件工程
stackoverflow-roberta-base-sentiment是一个专门用于软件工程文本情感分析的RoBERTa模型。它基于cardiffnlp/twitter-roberta-base-sentiment模型,使用StackOverflow4423数据集进行微调。该模型能够分析软件工程相关文本的正面、中性和负面情感倾向。通过简单的Python代码,开发者可以快速实现情感分析。这个开源项目为软件开发社区提供了一个分析开发者反馈和讨论的实用工具。
mdeberta-v3-base-squad2 - 基于DeBERTa V3架构的多语言问答模型
DeBERTaGithubHuggingfaceSQuAD多语言模型开源项目模型自然语言处理问答系统
这是一个支持100多种语言的问答模型,基于DeBERTa V3架构开发。模型在SQuAD2.0数据集上经过微调,F1评分达到84.01%,可实现高质量的文本抽取式问答。采用ELECTRA预训练方法和优化的嵌入技术,适用于多语言自然语言处理任务。
roberta-large-wanli - WANLI数据集训练的高性能自然语言推理模型
GithubHuggingfaceRobertaForSequenceClassificationWANLI开源项目数据集生成模型模型训练自然语言推理
roberta-large-wanli是一个在WANLI数据集上微调的自然语言推理模型。该模型在8个域外测试集上表现优异,特别是在HANS和Adversarial NLI测试集上分别比roberta-large-mnli模型提高了11%和9%的性能。WANLI数据集通过结合GPT-3的生成能力和人工评估,创建了高质量的NLI样本,从而提升了模型的推理能力和泛化性。
distilroberta-base - DistilRoBERTa:轻量高效的英语语言模型
DistilRoBERTaGithubHuggingface开源项目机器学习模型模型蒸馏自然语言处理语言模型
DistilRoBERTa-base是RoBERTa-base的精简版本,采用与DistilBERT相同的蒸馏技术。模型包含6层结构,768维向量和12个注意力头,总参数量为8200万,比原版减少33%。在保持相近性能的同时,处理速度提升一倍。主要应用于序列分类、标记分类和问答等下游任务的微调。该模型在英语处理上表现优异,但使用时需注意其可能存在的偏见和局限性。
bertin-roberta-base-spanish - 创新抽样技术实现高效西班牙语模型训练
BERTINGithubHuggingfaceRoBERTa开源项目机器学习模型自然语言处理西班牙语
BERTIN项目采用创新的抽样技术从mC4数据集中提取高质量西班牙语语料,实现了以更少的步骤和数据量训练RoBERTa模型。该方法不仅提高了训练效率,还使模型在某些任务上超越了现有的最先进水平,为小团队在有限资源下开发大型语言模型提供了新思路。
roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli - 基于RoBERTa-Large的多数据集自然语言推理模型
GithubHuggingfaceMNLIRoBERTaSNLI开源项目模型自然语言推理预训练模型
基于RoBERTa-Large架构的自然语言推理模型,通过SNLI、MNLI、FEVER-NLI和ANLI等数据集训练而成。模型用于判断文本间的蕴含关系,输出包括推理(entailment)、中性(neutral)和矛盾(contradiction)三种类别。支持使用Transformers库进行API调用,可进行批量数据处理。
roberta-large-NER - XLM-RoBERTa大型模型用于多语言命名实体识别
GithubHuggingfaceXLM-RoBERTa人工智能命名实体识别多语言模型开源项目模型自然语言处理
XLM-RoBERTa-large模型基础上微调的多语言命名实体识别工具,支持100多种语言。在英语CoNLL-2003数据集上训练,可用于命名实体识别和词性标注等标记分类任务。该模型由Facebook AI研究团队开发,具有强大的跨语言能力,但存在潜在偏见和局限性。作为自然语言处理的重要工具,它为多语言文本分析提供了有力支持。
deberta-v3-base - 高效预训练语言模型提升自然语言理解任务性能
DeBERTaGithubHuggingface开源项目文本分类模型深度学习自然语言处理预训练模型
DeBERTa-v3-base是一种改进的预训练语言模型,采用ELECTRA风格预训练和梯度解耦嵌入共享技术。该模型在SQuAD 2.0和MNLI等自然语言理解任务上表现优异,超越了RoBERTa等基准模型。它具有12层结构、768维隐藏层、86M骨干参数和128K词表。研究人员可通过Hugging Face Transformers库对其进行微调,应用于多种自然语言处理任务。
Legaliser AI - 智能合同管理与法律研究平台
AIAI工具协作编辑合同管理合规性法律技术
Legaliser是一个专业的智能合同管理平台,整合了先进的合同分析、起草工具和丰富的可定制法律模板库。平台能自动提取合同关键信息、评估风险、优化条款,并支持团队协作。Legaliser致力于提升企业法律工作效率,确保合同准确性和合规性。从企业高管到法务团队,再到各行业专业人士,都能借助Legaliser的智能功能,实现更高效、更精准的合同处理,加快审核速度,降低法律风险。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号