Project Icon

Ruqiya_-_Merge-Gemma-2b-it-with-a-Fine-Tuned-one-for-Arabic-gguf

通过量化技术增强阿拉伯语模型的表现力

项目旨在通过融合与微调Merge-Gemma-2b-it模型,提升阿拉伯语语言模型的精确性。借助LazyMergekit工具,将Ruqiya团队开发的微调模型与Google基准模型结合,并采用多个量化方法,提升模型的性能与存储效率。量化工作由Richard Erkhov完成,GitHub上提供了多种模型版本供用户使用。从数据配置到实际应用,项目提供全面的技术支持,以优化语言生成任务。

SuperNova-Medius-GGUF - 多种量化方法提升模型性能与适配性
ARMGithubHuggingfaceRAMSuperNova-Medius开源项目性能模型量化
SuperNova-Medius-GGUF项目通过llama.cpp工具对SuperNova-Medius模型进行多种量化处理,是以多样化版本满足不同应用的需求。精细化量化过程依托imatrix选项,提供了多种质量和性能的选择。用户可以根据自身硬件环境,如ARM架构设备、低RAM或需最大化GPU VRAM使用的场景,选择相应版本。此外,项目为文件选择提供了详细指南,确保用户能够找到适合其系统性能的最佳模型版本。这些量化技术为不同硬件上的文本生成任务提供了广泛的支持。
gemma-2b-it - Google开源轻量级语言模型 适用于资源受限环境
GemmaGithubHuggingface人工智能大型语言模型开源项目机器学习模型自然语言处理
Gemma-2b-it是Google开源的轻量级指令调优语言模型,采用2B参数设计。该模型支持问答、摘要和推理等多种文本生成任务,适用于笔记本电脑等资源受限环境。Gemma-2b-it在英语环境下表现出色,开放权重为AI创新提供更多可能。该模型基于Gemini技术,是Google推动AI民主化的重要举措。
gemma-2b-bnb-4bit - 提高模型微调速度和内存效率,支持多模型免费训练
GemmaGithubHuggingfaceLlamaMistralUnsloth开源项目模型模型微调
该项目提供了一套适用于Unsloth的Google Colab免费笔记本,通过优化微调,提升Gemma、Mistral和Llama等模型的执行速度至2至5倍,且减少内存使用达70%。用户只需添加数据集并运行,即可快速获得微调模型,还可导出为多种格式或上传至Hugging Face。项目特点包括对初学者的友好性和对多模型的支持,成为高效深度学习的重要工具。
gemma-2-9b - Google推出的轻量级开源大语言模型适用于资源有限环境
GemmaGithubHuggingface人工智能大语言模型开源项目机器学习模型自然语言处理
Gemma是Google开发的轻量级开源大语言模型系列,源自Gemini模型技术。这些英语文本生成模型开放预训练和指令微调权重,可用于问答、摘要和推理等任务。较小的规模使其适用于资源受限环境,如笔记本电脑或个人云设施,让更多人能使用先进AI模型。Gemma经过安全和伦理评估,并提供负责任AI开发工具包,确保安全可靠使用。
Arabic-Whisper-CodeSwitching-Edition - 针对阿拉伯语和英语混合语音的优化识别模型
GithubHuggingfacetransformers代码转换开源项目模型语言模型语音识别阿拉伯语
本模型是经过精调的OpenAI Whisper Large v2版本,旨在提升阿拉伯语和英语混合语音的识别精度。基于阿拉伯-英语代码切换数据集训练,适用于处理多语言环境中的阿拉伯语和英语混合语音。虽然在该特定场景中表现优异,但在其它语言或单语言场景中性能可能有所下降。
BeagSake-7B - 高效文本生成模型的合并与性能评估
AI评测BeagSake-7BGithubHugging FaceHuggingfacetext-generation开源项目模型模型合并
BeagSake-7B项目通过LazyMergekit工具合并了BeagleSempra-7B和WestBeagle-7B模型,以优化文本生成性能。该项目在AI2 Reasoning Challenge、HellaSwag等多项测试任务中表现优异,通过调整模型合并策略和采用float16精度,有效提升了模型的推理效率。此策略为多种语言理解任务提供了新的技术路径。
Mistral-Nemo-Instruct-2407-GGUF - 多语言高性能指令型语言模型的GGUF量化方案
GithubHuggingfaceMistral-Nemo-Instruct-2407大型语言模型开源项目提示模板模型模型量化硬件需求
Mistral-Nemo-Instruct-2407-GGUF是Mistral AI和NVIDIA联合开发的指令微调大语言模型的量化版本。该模型支持多语言处理,性能优于同等规模模型。项目提供多种GGUF量化方案,文件大小从4.79GB到24.50GB不等,适用于不同硬件配置,方便在各类设备上部署。
ARBERTv2 - 基于大规模MSA语料的阿拉伯语双向Transformer模型
BERTGithubHuggingface开源项目机器学习模型自然语言处理阿拉伯语预训练语言模型
ARBERTv2是一款针对阿拉伯语的高性能预训练语言模型。它基于243GB文本和278亿个标记的现代标准阿拉伯语(MSA)语料库训练,是ARBERT的升级版。在ARLUE基准测试中,ARBERTv2在48个分类任务中的37个上实现了最佳性能,总体评分达77.40,优于包括XLM-R Large在内的其他模型,展现了卓越的阿拉伯语理解能力。
Gemma-2-9B-It-SPPO-Iter3 - 通过自我游戏偏好优化增强语言模型 alignment
Gemma-2-9B-It-SPPO-Iter3GithubHuggingface合成数据集开源项目模型自我博弈偏好优化语言模型超参数
Gemma-2-9B-It-SPPO-Iter3以google/gemma-2-9b-it为基础,经过第三次自我游戏偏好优化迭代开发,结合openbmb/UltraFeedback数据集微调。在合成数据集中展现了出色的性能,LC.获胜率达到53.27%,在AlpacaEval排行榜上表现优良。项目主要使用英语,遵循Apache-2.0许可,适用于多种自然语言处理场景。
granite-3.0-8b-instruct-GGUF - 文本生成模型的量化优化与性能提升
GithubHuggingfacegranite-3.0huggingface开源项目数据集文本生成模型量化
项目通过llama.cpp对granite-3.0-8b-instruct模型进行量化优化,适用于低内存环境的高效运行。根据硬件资源,用户可以从多种量化模型中选择,实现性能与质量的最佳平衡。项目支持代码生成、数学推理和多语言处理等任务,并提升了在IFEval、AGI-Eval等数据集上的表现。提供了从高质量全权重到ARM架构优化模型的多种选择,加速模型推断过程,展示了在文本生成领域的有效实践。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号