Project Icon

blip2-flan-t5-xxl

整合CLIP和Flan T5的多模态模型实现图像理解与语言生成

BLIP2-FLAN-T5-XXL是一个集成CLIP图像编码器、查询转换器和Flan T5-xxl语言模型的多模态系统。通过查询转换架构连接图像特征和语言理解,实现图像描述生成、视觉问答和基于图像的对话功能。模型支持CPU/GPU部署,提供float16、int8等多种精度配置选项。目前主要应用于图像理解和自然语言生成的研究领域。

MobileCLIP-S2-OpenCLIP - 高效图像-文本模型通过多模态强化训练实现性能突破
GithubHuggingfaceMobileCLIPOpenCLIP图像文本模型多模态强化训练开源项目模型零样本图像分类
MobileCLIP-S2-OpenCLIP是一款基于多模态强化训练的高效图像-文本模型。相比SigLIP的ViT-B/16模型,它在性能上有所超越,同时速度提升2.3倍,模型体积缩小2.1倍,且仅使用了1/3的训练样本。在ImageNet零样本分类任务中,该模型达到74.4%的Top-1准确率,在38个数据集上的平均性能为63.7%,体现了出色的效率与性能平衡。
llava-1.5-7b-hf - 基于Llama 2的多模态AI模型 实现图像理解与对话
GithubHuggingfaceLLaVATransformers图像文本生成多模态开源项目模型模型优化
LLaVA-1.5-7B是一个基于Llama 2架构的开源多模态视觉语言模型。通过指令微调,该模型实现了图像理解和对话能力,支持多图像输入和多轮对话。LLaVA-1.5-7B可应用于图像问答、视觉推理等任务,并提供便捷的pipeline接口。模型支持4比特量化和Flash Attention 2优化,可在普通GPU上高效运行。这为研究人员和开发者提供了一个功能强大的视觉语言AI工具。
x-clip - 灵活实现的CLIP视觉语言预训练模型
CLIPGithub多模态对比学习开源项目深度学习视觉语言模型
x-clip是一个简洁而全面的CLIP实现,整合了多项前沿研究成果。该项目支持灵活的模型配置,包括自定义文本和图像编码器、多视图对比学习和视觉自监督学习等功能。通过易用的API,研究人员可以快速实验各种CLIP变体和改进方案。x-clip适用于图像检索、跨模态理解等多种视觉语言任务。
CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup - CLIP ConvNeXt-XXLarge模型在零样本图像分类上的卓越性能
CLIPConvNeXtGithubHuggingface开源项目模型深度学习计算机视觉零样本图像分类
CLIP ConvNeXt-XXLarge是基于LAION-2B数据集训练的大规模视觉-语言模型。它在ImageNet零样本分类任务中实现79.4%的准确率,成为首个非ViT架构突破79%的CLIP模型。该模型结合847M参数的ConvNeXt-XXLarge图像塔和ViT-H-14规模的文本塔,在计算效率和性能间达到平衡,为视觉-语言模型研究开辟新方向。
InternVL2-40B - 强化跨模态大语言模型的能力
GithubHuggingfaceInternVL场景文本理解多模态开源项目模型视觉理解计算机视觉
InternVL 2.0 通过融合多模态大语言模型,在文件和图表理解、信息图问答、场景文本理解和OCR任务等方面表现出色。它能够利用长文本、多图片和视频进行训练,提升对多种输入的处理效率,并提供1亿到108亿参数的多种模型可选择,与商业模型相当。在多项基准测试中,InternVL 2.0 展示了其卓越的综合理解能力。
t5-v1_1-xxl-encoder-bf16 - Google T5 v1.1 XXL编码器模型助力文本到图像生成
GithubGoogleHuggingfaceT5单一安全张量开源项目文本到图像模型文本编码器模型
t5-v1_1-xxl-encoder-bf16是Google T5 v1.1 XXL编码器模型的单一safetensor版本,采用bfloat16精度。该模型设计用于配合PixArt等文本到图像模型,提供高效的文本编码能力。它可以提升文本到图像生成的质量和效率,适用于需要高性能文本理解和处理的AI图像生成项目。
InternVL2-8B - 多模态大语言模型在图像理解、视频分析和目标定位方面的全面能力
GithubHuggingfaceInternVL2多模态大语言模型开源项目指令微调推理性能模型视觉语言模型
InternVL2-8B是一个基于InternViT-300M-448px和internlm2_5-7b-chat的多模态大语言模型。该模型在文档理解、图表分析和场景文本识别等图像任务中表现优异,同时在视频理解和目标定位方面也展现出强大能力。支持8k上下文窗口,能够处理长文本、多图像和视频输入,在开源多模态模型中具有竞争力。
OpenAI-CLIP - 从零开始实现CLIP模型:探索文本与图像的多模态关联
CLIPGithubOpenAI图像编码器多模态开源项目文本编码器
本项目实现了CLIP模型,基于PyTorch进行开发,通过训练文本和图像数据,探索其相互关系。详细的代码指南和实用工具展示了模型在自然语言监督任务中的表现和实际应用,适合多模态学习的研究者和开发者使用。
CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k - CLIP架构多语言视觉语言模型实现高效零样本图像分类与检索
CLIPGithubHuggingfaceLAION-5B图像分类多语言模型开源项目模型零样本学习
这是一个基于CLIP架构的多语言视觉语言模型,在LAION-5B数据集上训练。模型结合了冻结的ViT-H/14视觉结构和XLM-RoBERTa大型文本模型,在多语言零样本图像分类和检索任务中表现优异。适用于零样本图像分类、图文检索等应用,也支持下游任务微调。该模型在英语及其他语言中均展现出强大性能,为跨语言视觉AI应用提供了有力支持。
flan-t5-large - 多语言指令微调自然语言处理模型
FLAN-T5GithubHuggingfaceT5多语言开源项目指令微调模型自然语言处理
FLAN-T5-large是基于T5架构的多语言自然语言处理模型,通过在1000多个任务上进行指令微调而来。该模型支持英语、法语、德语等多种语言,可用于翻译、问答、逻辑推理等任务。FLAN-T5-large在多项基准测试中展现出优秀的少样本学习能力,性能接近于更大规模的模型。通过指令微调,FLAN-T5-large在保持T5原有能力的同时,显著提高了模型的通用性和实用性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号