Project Icon

moirai-1.0-R-base

基于Transformer的通用时间序列预测模型

Moirai-1.0-R-base是一个基于掩码编码器的通用时间序列预测Transformer模型,在LOTSA数据集上预训练。该模型包含9100万参数,使用补丁嵌入和变量ID编码方法,可处理多变量时间序列数据进行预测。模型支持自定义预测长度和上下文窗口设置,通过uni2ts库实现部署。作为Moirai系列的中型版本,该模型在性能和计算效率方面达到平衡。

moirai-1.0-R-small - Moirai 开源预训练时间序列预测模型
GithubHuggingfaceMoiraiTransformer开源项目时间序列预测机器学习模型预训练模型
Moirai-1.0-R-small是一个开源的预训练时间序列预测模型。它基于掩码编码器架构,在LOTSA数据集上训练,可处理多变量时间序列。该模型使用补丁嵌入和混合分布输出等技术,提供高精度预测。通过uni2ts库,研究人员和开发者可以便捷地将Moirai应用于各类时间序列预测任务。
moirai-1.0-R-large - 基于Transformer的通用多变量时序预测模型
GithubHuggingfaceMoirai大规模预训练开源项目时间序列预测机器学习模型深度学习
Moirai-1.0-R-large是一个基于Masked Encoder的时序预测Transformer模型,通过LOTSA数据集预训练而成。模型采用补丁嵌入和Transformer架构设计,支持多变量时序数据处理和动态协变量预测。用户可通过uni2ts库实现模型部署,拥有3.11亿参数的模型规模使其成为Moirai系列中参数量最大的版本。
modeltime - R语言时间序列预测框架 整合机器学习与传统方法
GithubR语言modeltime工作流开源项目时间序列预测机器学习
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
TimeMoE-50M - 混合专家时间序列预测基础模型 提升大规模数据分析能力
GithubHuggingfaceTimeMoE基础模型开源项目时间序列预测模型深度学习混合专家模型
TimeMoE-50M是一个基于混合专家(MoE)架构的时间序列预测基础模型,专为处理十亿规模数据而设计。此模型旨在优化大规模时间序列分析的准确性和效率。开发者可在GitHub页面上找到详细的使用指南和实现方法,有助于将其整合到各类时间序列分析项目中,提升预测能力。
MOMENT-1-large - 多功能时间序列分析基础模型:预测、分类、异常检测和填补
GithubHuggingfaceMOMENT基础模型开源项目时间序列分析机器学习模型预训练模型
MOMENT-1-large是一款专为时间序列分析设计的多功能基础模型。它能够高效处理预测、分类、异常检测和数据填补等多种任务。该模型具有出色的零样本和少样本学习能力,可以在缺少或仅有少量任务特定样本的情况下直接使用。此外,MOMENT-1-large支持使用领域相关数据进行微调,以进一步提升性能。作为一个灵活而强大的工具,它为各类时间序列分析任务提供了有力支持。
iTransformer - 用于多变量时间序列预测的iTransformer模型
GithubTransformer模型iTransformer多变量预测开源项目时间序列预测高效注意力机制
iTransformer是一种用于多变量时间序列预测的开源模型,无需修改任何Transformer模块。它在处理大规模数据时表现出色,具备显著的性能提升和强大的泛化能力。iTransformer已在多种基准测试中表现优异,支持静态协变量和概率发射头。用户可通过pip安装,并使用项目提供的详细训练和评估脚本。更多信息请参阅官方论文。
chronos-t5-base - T5架构驱动的时间序列预测基础模型
ChronosGithubHuggingfaceT5架构开源项目时间序列预测机器学习模型预训练模型
Chronos-T5-Base是一款基于T5架构的时间序列预测基础模型,具有2亿参数规模。该模型将时间序列转换为token序列,通过交叉熵损失训练,能够生成多样化的概率性预测。Chronos-T5-Base在大量公开时间序列数据和合成数据上进行了预训练,适用于广泛的时间序列预测场景。研究人员和开发者可以通过Python接口轻松调用该模型,实现高效的时间序列分析和预测。
chronos-t5-base - T5架构驱动的时间序列预测基础模型
ChronosGithubHuggingfaceT5架构开源项目时间序列预测概率预测模型语言模型
Chronos-T5-Base是一个基于T5架构的时间序列预测基础模型,拥有2亿参数。该模型将时间序列数据转化为token序列,并通过交叉熵损失函数进行训练。通过采样多个可能的未来轨迹,Chronos-T5-Base能够生成概率预测结果。模型在大量公开时间序列数据和合成数据上训练,适用于多种时间序列预测场景,为研究人员和开发者提供了一个强大的预训练工具。
granite-timeseries-ttm-r2 - IBM开源轻量级模型TTM引领时间序列预测新方向
GithubHuggingfaceTinyTimeMixers多变量预测开源项目时间序列预测模型零样本学习预训练模型
IBM Research开源的TinyTimeMixers (TTM)模型仅需1M参数,就能在多变量时间序列预测中超越数十亿参数的基准。TTM支持零样本预测,也可用少量数据微调达到竞争性能。适用于分钟至小时级别的点预测,轻量快速,单GPU或笔记本即可运行。TTM为时间序列预测带来新方向,尤其适合资源受限环境。
iTransformer - 先进的时间序列预测模型,打造SOTA性能
GithubiTransformer人工智能开源项目时间序列预测注意力网络深度学习
iTransformer是一种基于注意力机制的时间序列预测模型,由清华大学和蚂蚁集团研究人员开发。该模型采用倒置Transformer结构,支持多变量和多步长预测。iTransformer引入了可逆实例归一化等技术,旨在提高预测准确性和处理长序列数据的能力。这个开源项目为时间序列分析提供了新的研究方向。项目提供Python实现,支持使用PyTorch框架。用户可通过pip安装并轻松集成到现有的时间序列分析工作流程中。该项目还包括实验性功能,如二维注意力和傅里叶变换增强版本,为研究人员提供了探索和改进的空间。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号