Project Icon

NVLM-D-72B-nf4

多模态模型NF4量化与性能优化研究

NVLM-D-72B模型NF4量化转换项目利用BitsAndBytes技术实现双重量化,旨在优化性能。目前纯文本处理表现出色,但图像处理功能仍需完善。项目优化了modeling_intern_vit.py文件,提高了量化模块兼容性。模型运行需48GB以上显存,遵循CC BY-NC 4.0许可。该项目为探索大型多模态模型量化提供了宝贵经验。

gemma-2-2b-it-bnb-4bit - Gemma模型量化优化实现快速微调与内存高效管理
GemmaGithubHuggingfacetransformers开源项目机器学习模型模型微调模型量化
这是一个面向Gemma-2-2b模型的量化优化项目,集成了bitsandbytes和Unsloth技术,显著提升了模型微调效率并降低内存占用。项目通过Google Colab提供开箱即用的运行环境,支持一键式模型优化,并可将优化后的模型导出为GGUF格式或部署至vLLM平台。该方案特别适合资源受限环境下的模型优化需求。
Meta-Llama-3.1-8B-Instruct-AWQ-INT4 - 高性能4比特量化优化版本
AutoAWQGithubHuggingfaceMeta-Llama-3.1大语言模型开源项目推理模型量化
Meta-Llama-3.1-8B-Instruct模型的社区驱动4比特量化版本,采用AutoAWQ技术从FP16量化到INT4。该版本仅需4GB显存即可加载,大幅降低内存占用。支持Transformers、AutoAWQ、TGI和vLLM等多种推理方式,适用于不同部署场景。量化模型在保持原始性能的同时,为资源受限环境提供了高效的大语言模型方案。
Mistral-Nemo-Instruct-2407-FP8 - FP8量化技术在模型优化与部署中的应用
GithubHuggingfaceMistral-Nemo-Instruct-2407-FP8开源项目模型模型优化评估部署量化
Mistral-Nemo-Instruct-2407-FP8通过FP8量化技术提升了模型的内存和体积效率,主要用于商业和研究。该模型适用于英语聊天助手,利用参数位数的减少节省约50%的资源。结合vLLM>=0.5.0的高效推理环境,优化部署性能。量化由AutoFP8完成,Neural Magic计划转向支持更多方案的llm-compressor。尽管量化后某些评测得分略有下降,但保持的性能恢复率使其成为资源效率化的优选方案。
gemma-2-2b-bnb-4bit - Gemma模型4bit量化实现提速降耗的AI推理优化
GemmaGithubHuggingfaceLlamaUnsloth开源项目机器学习模型模型微调
该项目对Gemma-2-2b模型进行4bit量化优化,通过bitsandbytes技术实现高效压缩。在Google Colab环境下可实现2倍以上推理速度提升,同时节省60%以上内存占用。项目提供完整的模型微调支持,可帮助开发者在有限算力条件下高效部署语言模型。
Qwen2.5-72B-Instruct-GPTQ-Int4 - Qwen2.5-72B模型4位量化版支持128K长文本及多语言处理
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目模型量化长文本处理
Qwen2.5-72B指令微调模型通过GPTQ技术实现4位量化,降低了模型部署门槛。模型支持中英等29种语言,具有出色的代码开发和数学运算能力,可处理128K tokens长度的输入文本并生成8K tokens的输出。基于RoPE等技术的transformers架构使其在长文本理解、结构化数据处理等任务中表现稳定。
Mistral-Large-Instruct-2407-GGUF - Mistral-Large-Instruct-2407模型的多语言量化方法与文件选择建议
GPU性能优化GithubHuggingfaceMistral-Large-Instruct-2407开源项目文本生成模型量化量化格式
Mistral-Large-Instruct-2407项目提供了多种语言支持的模型量化版本。通过llama.cpp工具,用户可以根据不同的RAM和VRAM需求进行量化。文章详细介绍每种量化文件的特性与性能建议,帮助用户根据硬件条件选取适合的文件,实现模型的快速或高质量运行。推荐关注K-quant与I-quant格式文件以在性能与速度间取得平衡。
Phi-3.1-mini-4k-instruct-GGUF - Phi-3.1-mini-4k-instruct量化技术在文本生成中的应用
GithubHuggingfaceNLPPhi-3.1-mini-4k-instruct开源项目数据集文件下载模型量化
该项目通过llama.cpp进行模型量化,提供多种量化文件选项,涵盖从高质量到适合低内存设备的多种场景。项目详细介绍了如何选择量化文件,并提供了在不同硬件环境下的最佳实践,对于有技术需求的用户,项目提供了功能特性对比分析,帮助理解量化与优化策略。
Nemotron-Mini-4B-Instruct-GGUF - 量化模型应用指南与选择推荐
项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。
Tiger-Gemma-9B-v1-GGUF - 通过多种量化方法优化Tiger-Gemma-9B模型的文本生成
GithubHuggingfaceTiger-Gemma-9B-v1开源项目性能比较模型模型下载量化高质量
Tiger-Gemma-9B-v1项目应用llamacpp imatrix方法进行量化,提供多种量化文件选项以适应不同的系统内存和速度需求。使用详细的下载指南可帮助用户根据其硬件配置选择合适的量化文件,如推荐的Q6_K_L和Q5_K_L,以优化文本生成质量。该模型支持VRAM和系统RAM优化,并兼容Nvidia cuBLAS和AMD rocBLAS。
idefics2-8b-chatty-AWQ - 4-bit量化的多模态模型及其应用场景
4-bit AWQGithubHuggingFaceM4/idefics2-8b-chattyHuggingface图像文本多模态开源项目模型量化
这是一款4-bit AWQ量化的多模态模型,支持多种数据集与任务,帮助提升计算效率和模型性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号