Project Icon

NVLM-D-72B-nf4

多模态模型NF4量化与性能优化研究

NVLM-D-72B模型NF4量化转换项目利用BitsAndBytes技术实现双重量化,旨在优化性能。目前纯文本处理表现出色,但图像处理功能仍需完善。项目优化了modeling_intern_vit.py文件,提高了量化模块兼容性。模型运行需48GB以上显存,遵循CC BY-NC 4.0许可。该项目为探索大型多模态模型量化提供了宝贵经验。

Llava-v1.5-7B-GGUF - 轻量级多模态图文处理模型 支持多种精度量化
GithubHuggingfaceLLaVALlamaEdge图文理解大语言模型开源项目模型模型量化
Llava-v1.5-7B-GGUF是Llava 1.5 7B模型的GGUF量化版本,提供2位至8位多种精度选择,可根据性能和质量需求灵活使用。项目支持通过LlamaEdge快速部署,适用于多模态AI应用场景。该模型具备图像理解和文本生成能力,在保持性能的同时实现了模型体积的压缩。
Gemma-2-9B-It-SPPO-Iter3-GGUF - 探讨Gemma-2-9B模型量化版本的性能与存储选择
Gemma-2-9B-It-SPPO-Iter3GithubHuggingface下载指南开源项目数据集模型量化高性能
该项目利用llama.cpp进行量化,推出多种Gemma-2-9B-It-SPPO-Iter3模型版本以适应不同的内存及性能需求。用户可按RAM和VRAM状况选择合适的量化格式,如高质量的Q6_K_L或经济型IQ2_M。量化文件大小介于4GB至37GB之间,且可通过Huggingface下载。根据VRAM选择合适模型尺寸,有助于优化运行速度,并提供多样化选项以满足不同性能与存储需求。
flux.1-lite-8B-alpha-gguf - 量化模型转化与图像生成的精准实现
FreepikGithubHuggingface图像生成开源项目文本到图像模型量化非商业许可
通过GGUF转换,该项目实现了Freepik/flux.1-lite-8B-alpha模型的量化版本。该量化模型适用于ComfyUI-GGUF自定义节点的图像生成及文本转图像任务,同时遵循原始的限制和许可条款。模型文件需要存放在ComfyUI/models/unet路径下,安装说明请参见GitHub页面。该模型的量化转换有助于图像生成的灵活性。
gemma-2-9b-it-GGUF - AI语言模型量化版本满足多种硬件需求
GPU内存优化GithubHuggingfacegemma-2-9b-it开源项目文件格式转换机器学习模型模型量化
本项目提供Google Gemma 2 9B模型的多种量化版本,涵盖从高质量Q8_0到轻量级IQ2_M。详细介绍了各版本特点、文件大小和推荐用途,并附有下载使用指南。这些优化版本在保持性能的同时大幅减小体积,适配不同硬件和内存需求,使模型能在更多设备上运行。
Llama3-8B-1.58-100B-tokens - 基于BitNet架构的Llama3 8B量化版本
BitNetGithubHuggingfaceLlama3-8B-1.58开源项目模型模型训练语言模型量化
这是一个基于BitNet 1.58b架构的语言模型,通过对Llama-3-8B-Instruct进行微调开发。模型在FineWeb-edu数据集上完成了1000亿token的训练,采用1e-5学习率。测评显示其部分性能指标接近原版Llama3 8B,体现了极限量化在大型语言模型领域的应用潜力。
KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
VisualGLM-6B - 一个具备处理图像、中文和英文的能力的开源多模态对话语言模型
GithubVisualGLM-6B图像描述多模态对话模型开源开源项目微调
VisualGLM-6B是一个开源多模态对话语言模型,具备处理图像、中文和英文的能力。该模型继承自强大的ChatGLM-6B基础,增添了6.2亿参数,整合了先进的BLIP2-Qformer技术,达到了语言和视觉数据的高效融合。模型总参数量为7.8亿,展现在多个核心多模态任务上的卓越效能。针对各种应用场景均进行了优化,支持在消费级显卡上运行,降低了使用门槛,拓展了其在学术研究和实务应用中的潜力。
low-bit-optimizers - 4位优化器技术减少内存占用 提升大规模模型训练能力
4位优化器AdamWGithub内存效率开源项目神经网络训练量化
Low-bit Optimizers项目实现了一种4位优化器技术,可将优化器状态从32位压缩至4位,有效降低神经网络训练的内存使用。通过分析一阶和二阶动量,该项目提出了改进的量化方法,克服了现有技术的限制。在多项基准测试中,4位优化器实现了与全精度版本相当的准确率,同时提高了内存效率,为大规模模型训练开辟了新途径。
DCNv4 - 为视觉应用设计的高效算子,通过优化空间聚合和内存访问
DCNv4Github可变形卷积开源项目深度学习神经网络计算机视觉
DCNv4是一种为视觉应用设计的高效算子。通过优化空间聚合和内存访问,它解决了DCNv3的局限性。DCNv4在图像分类、分割和生成等任务中表现优异,收敛和处理速度显著提升,前向速度提高3倍以上。其卓越的性能和效率使DCNv4成为未来视觉模型的潜力基础构建块。
SqueezeLLM - 硬件资源优化下的大语言模型量化服务
GithubSqueezeLLM内存优化大语言模型开源项目模型压缩量化
SqueezeLLM通过密集与稀疏量化方法降低大语言模型的内存占用并提升性能,将权重矩阵拆分为易量化的密集组件和保留关键部分的稀疏组件,实现更小内存占用、相同延迟和更高精度。支持包括LLaMA、Vicuna和XGen在内的多个热门模型,提供3位和4位量化选项,适用于不同稀疏度水平。最新更新涵盖Mistral模型支持和自定义模型量化代码发布。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号