Project Icon

sn-gamestate

创新足球比赛状态重建技术实现运动员追踪与识别

SoccerNet Game State Reconstruction项目提出了一种新的计算机视觉任务,通过单个移动摄像头追踪和识别足球运动员,并构建小型地图。该项目引入了包含200个标注视频片段的数据集和新评估指标,提供了基于深度学习的基线系统和开源代码库。这一创新技术为体育行业提供了自动化比赛状态重建的工具,有望推动相关研究的进一步发展。

sports - 体育中的对象检测与影像分析
GithubRoboflowsports关键点检测图像分割开源项目物体检测
该项目旨在通过对象检测、图像分割和关键点检测等技术,解决体育分析中的多项挑战。提供的体育数据集和工具包能够优化球体追踪、球员号码识别、球员追踪和重新识别,以及相机校准功能。用户可以在Python环境下安装源代码,并利用开源数据集推进体育数据分析的发展。
SportsLabKit - 专业体育分析工具包 实现比赛视频数据化
GithubSportsLabKit体育分析开源项目数据处理目标跟踪计算机视觉
SportsLabKit是一个开源的体育分析工具包,可将比赛视频转换为可分析的数据。目前主要用于足球领域,计划扩展到其他运动。核心功能包括高性能追踪、灵活架构、2D场地校准和数据封装,便于进行运动员追踪和数据分析。该项目集成了SORT、DeepSORT、ByteTrack等多种追踪算法,支持YOLOv8等检测模型,为研究人员和开发者提供了灵活的开发环境。SportsLabKit正在持续开发中,旨在提供更多计算机视觉工具和统一的数据表示方法。
sports - 使用YOLOv5和ByteTrack追踪足球运动员,结合YOLOv7进行3D姿势估计及GPT-4V分析队服颜色分配球员
ByteTrackGPT-4VGithubYOLOv5开源项目计算机视觉足球运动员
本文介绍了如何在足球赛事中使用YOLOv5和ByteTrack技术进行球员追踪,使用YOLOv7实现3D姿势估计,并通过GPT-4V基于球衣颜色分配球员。文章包含技术应用示例、实现方法以及相关视频和代码资源,旨在帮助读者更好地理解和应用这些技术。
soccer-video-analytics - AI视频分析自动测量足球比赛球权占有率
AIGithub代码仓库开源项目球权统计视频分析足球
soccer-video-analytics项目利用AI和视频分析技术,自动测量足球比赛中的球权占有率和传球次数。该开源工具包含球权计算器和传球统计器两个主要应用。用户通过命令行操作,输入视频和预训练球检测模型,即可生成带分析结果的输出视频。这一创新解决方案旨在提升足球比赛数据分析的效率和准确性。
vid2player3d - 基于广播视频的物理模拟网球技能学习系统
GithubSIGGRAPH开源项目机器学习物理模拟网球技能视频分析
vid2player3d是一个从广播视频中学习网球技能的物理模拟系统。该项目结合物理模拟和机器学习技术,使用分层控制器架构,包括低级模仿策略、运动嵌入和高级规划策略。系统在IsaacGym环境中实现,能够捕捉真实选手的动作特征,为虚拟体育训练和娱乐应用提供了新的技术方案。
football_analytics - 全面足球分析资源库 数据、工具与知识集锦
GitHubGithub开源开源项目数据可视化资源列表足球分析
这个开源项目提供了丰富的足球分析资源,包括数据源、编程库、学术论文和博客文章等。内容涉及Python和R编程、数据可视化以及多个核心概念,适合足球分析领域的学习者和专业人士参考。项目持续更新,鼓励社区贡献。资源库汇集了足球分析所需的多种资料,为数据处理、可视化和关键分析方法提供全面学习参考。
shape-of-motion - 从单个视频实现4D场景重建的前沿技术
4D重建GithubShape of Motion单视频重建开源项目深度学习计算机视觉
Shape of Motion项目展示了一种新型4D重建方法,可从单个视频重建动态3D场景。该项目结合深度学习和计算机视觉技术,实现运动物体的精确重建。项目包含完整工作流程,涵盖预处理、模型训练和性能评估。研究团队公开了源代码和数据集,为计算机视觉领域提供了有价值的研究资源。这一技术可能在计算机图形学、增强现实等方面带来应用突破。
iros20-6d-pose-tracking - 6D姿态跟踪的优化方案,提高机器人操控和视觉领域的精度和效率
6D姿态跟踪GithubRGB-D图像iros20-6d-pose-trackingse(3)-TrackNet开源项目机器人操作
se(3)-TrackNet通过校准合成图像残差,实现视频序列中的6D姿态跟踪,适用领域包括机器人操控和增强现实。其神经网络架构有效减少域迁移,并采用Lie Algebra实现三维定向表示,即使仅使用合成数据训练也能在真实图像中工作。研究表明,在遮挡条件下,该方法提供稳定和精准的姿态估计,计算效率高达90.9Hz。
MOTSFusion - 将3D多目标跟踪与场景重建融合的创新算法
3D重建GithubKITTI数据集MOTSFusion开源项目目标跟踪计算机视觉
MOTSFusion项目提出了一种创新的多目标跟踪算法,通过融合3D跟踪和场景重建技术来提高准确性。该算法利用立体图像、光流和视差信息,结合分割网络和检测器,实现对车辆和行人的精确跟踪。项目在KITTI MOTS数据集上展现了优异性能,并开源了完整代码。这种方法为自动驾驶等应用中的多目标跟踪提供了新的思路。
SpaTracker - 将2D像素的3D空间运动轨迹可视化
3D追踪CVPR 2024GithubSpatialTracker像素追踪开源项目计算机视觉
SpaTracker是一个计算机视觉项目,可在3D空间中追踪视频中任意2D像素的运动轨迹。该项目支持RGB和RGBD视频输入,采用单目深度估计技术实现像素级追踪。SpaTracker提供演示代码和预训练模型,可视化效果优秀。这一工具可应用于动作分析和视觉特效等领域。该项目在CVPR 2024被评为亮点论文,体现了其在3D视觉追踪领域的创新性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号