Project Icon

RepViT

移动设备上的高效实时视觉模型

RepViT是一个轻量级CNN模型家族,整合了Vision Transformer的架构设计,在移动设备上实现了80%以上的ImageNet准确率,延迟仅1毫秒。RepViT-SAM将RepViT应用于SAM模型,显著降低了计算需求,实现了移动设备上的实时任意目标分割。这两个模型在图像分类、目标检测和语义分割等视觉任务中均表现出色,兼具高性能和高效率。

SAMed - 基于SAM的高效医学图像分割模型
GithubLoRASAMedSegment Anything Model医学图像分割多器官分割开源项目
SAMed是一种基于Segment Anything Model的医学图像分割方法,通过低秩适应微调策略优化SAM模型。在Synapse多器官分割数据集上,SAMed达到81.88 DSC和20.64 HD的性能。由于仅更新部分参数,SAMed具有低部署和存储成本的优势。研究团队还推出了性能更高的SAMed_h版本,为医学影像分析提供了新的解决方案。
Depth-Anything-V2-Small - 先进高效的开源深度估计工具
Depth-Anything-V2GithubHuggingface图像处理开源项目机器学习模型深度估计计算机视觉
Depth-Anything-V2-Small是一个开源的单目深度估计模型,基于大规模合成和真实图像数据训练。相比前代产品,该模型提供更精细的深度细节和更强的鲁棒性。它比同类基于稳定扩散的模型运行速度快10倍,且更加轻量化。模型支持高效的图像深度推断,可用于各种计算机视觉应用场景。
vit-gpt2-image-captioning - ViT-GPT2结合的智能图像描述生成模型
GithubHuggingfacetransformers图像描述开源项目模型深度学习自然语言处理计算机视觉
vit-gpt2-image-captioning是一个结合视觉Transformer和GPT-2的图像描述生成模型。该模型能准确识别图像内容并生成对应文本描述,支持多种图像输入方式,易于集成应用。项目提供简单使用示例和Transformers pipeline部署方法,为开发者提供了实用的开源图像描述解决方案。
UniRef - 跨空间时间的统一视觉对象分割模型
GithubUniRef++参考对象分割开源项目深度学习目标分割视频对象分割
UniRef++是一个统一的视觉模型,可同时处理指代图像分割、少样本分割、指代视频对象分割和视频对象分割四种任务。其核心UniFusion模块能高效注入多种参考信息,不仅性能优异,还可作为SAM等基础模型的插件组件使用。该模型在多个benchmark上展现出色表现,体现了其在对象分割领域的通用性和扩展性。
mobilenetv3_small_100.lamb_in1k - MobileNetV3小型模型:轻量级移动设备图像分类方案
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
MobileNetV3小型模型是一款基于timm库在ImageNet-1k数据集上训练的轻量级图像分类模型。它采用LAMB优化器和EMA权重平均技术,具有2.5M参数和0.1 GMACs的低计算量。该模型支持224x224像素输入,可用于图像分类、特征提取和嵌入生成,适合在移动设备上部署高效的视觉识别应用。
segment-anything-fast - 高性能图像分割模型加速框架
AI模型加速GithubPyTorchSegment Anything图像分割开源项目推理优化
segment-anything-fast是基于Facebook's segment-anything的优化版本,专注于提高图像分割模型的性能。通过整合bfloat16、torch.compile和自定义Triton内核等技术,该项目显著提升了模型推理速度。它支持多种优化方法,如动态int8对称量化和2:4稀疏格式,同时保持了简单的安装和使用流程。这使得开发者能够轻松替换原始segment-anything,实现更高效的图像分割。该优化框架适用于需要实时或大规模图像分割处理的应用,如自动驾驶、医疗影像分析或视频编辑等领域,可显著提高处理效率和资源利用率。
vit-base-patch32-384 - Vision Transformer图像分类模型支持大规模数据训练
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer(ViT)是一款图像分类模型,采用Transformer编码器架构,通过将图像分割为固定大小patch进行处理。模型在包含1400万张图像的ImageNet-21k数据集完成预训练,并在ImageNet-1k数据集上进行384x384分辨率的微调。提供预训练权重,可直接应用于图像分类或迁移学习任务。
3D-VisTA - 简化3D视觉和文本对齐的新型预训练模型
3D-VisTAGithub多模态融合开源项目自然语言处理计算机视觉预训练模型
3D-VisTA是一种新型预训练变换器模型,专注于3D视觉和文本对齐。该模型采用简洁统一的架构,无需复杂的任务特定设计,可轻松适应多种下游任务。通过在大规模ScanScribe数据集上预训练,3D-VisTA在视觉定位、密集字幕生成等3D视觉语言理解任务中达到了领先水平。此外,该模型还表现出优异的数据效率,即使在标注数据有限的情况下也能保持强劲性能。
Depth-Anything-V2-Base - 更快更精细的单目深度估计模型
Depth-Anything-V2GithubHuggingface图像处理开源项目模型深度估计深度学习计算机视觉
Depth-Anything-V2是一款先进的单目深度估计模型,由595K合成标记图像和62M+真实未标记图像训练而成。它在细节表现、鲁棒性和效率上都超越了V1版本,处理速度比基于SD的模型快10倍。采用ViT-B架构,该模型为计算机视觉领域提供了高效的深度预测工具,尤其适用于需要精确深度信息的应用场景。
VMamba - 高效的线性时间复杂度视觉骨干网络
GithubVMamba图像处理开源项目深度学习神经网络计算机视觉
VMamba是一种创新的视觉骨干网络,将Mamba状态空间语言模型应用于计算机视觉。其核心是视觉状态空间块堆栈,结合2D选择性扫描模块,实现线性时间复杂度。VMamba在图像分类、目标检测和语义分割等多项视觉任务中表现出色,特别是在输入尺度扩展效率方面优于现有模型。项目提供多种规模的预训练模型,适用于各类视觉感知任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号