Project Icon

voxlingua107-epaca-tdnn

全新多语言识别模型,覆盖107种语言,实现精确分类

该多语言识别模型基于SpeechBrain训练于VoxLingua107数据集,采用ECAPA-TDNN架构,可识别多达107种语言的语音。模型可用于独立的语言识别或作为嵌入特征提取器,助力开发自定义语言识别系统。训练数据源于自动采集的YouTube视频,总计6628小时的语音样本。模型在评测数据集上的误差率为7%,但在处理小众语言及带口音的语音时性能可能受限。

faster-whisper-large-v3-turbo-ct2 - 基于Whisper large-v3的多语言语音识别模型
CTranslate2GithubHuggingfaceWhisperfaster-whisper多语言支持开源项目模型语音识别
这是一个基于OpenAI Whisper large-v3模型优化的CTranslate2版本,专注于高效的语音识别。该模型支持100多种语言的转录,兼具准确性和速度。通过faster-whisper库,可以便捷地进行音频转录。模型采用FP16格式存储,计算类型可灵活调整。这为语音识别应用的开发提供了一个强大的工具。
faster-whisper-medium - 多语言语音识别与转录的高效开源解决方案
CTranslate2GithubHuggingfaceWhisper多语言开源项目模型模型转换自动语音识别
该项目是基于OpenAI Whisper medium模型转换而来的CTranslate2格式模型,为faster-whisper项目提供支持。支持90多种语言的语音识别和转录功能,性能优异且准确度高。用户可通过faster-whisper轻松实现音频文件的高效转录,获取精确的时间戳和文本输出。模型采用float16量化,计算类型可根据需求灵活调整,适用于多种语音识别应用场景。
SmolLM-360M - 3.6亿参数的高效语言模型 专注常识推理和知识理解
GithubHuggingfaceSmolLM人工智能开源项目模型模型训练神经网络语言模型
SmolLM-360M是一款拥有3.6亿参数的高效语言模型,基于Cosmo-Corpus数据集训练而成。该模型利用Cosmopedia v2合成教材、Python-Edu教育样本和FineWeb-Edu网络教育资源等高质量数据,在常识推理和世界知识等多项基准测试中表现出色。SmolLM-360M支持CPU/GPU部署,并提供8位和4位量化版本以优化内存使用。这款模型主要面向英语内容生成和理解,可作为AI辅助工具在多种场景中应用。
distilbert-base-multilingual-cased - 提升效率的多语言轻量级BERT模型,支持104种语言
DistilBERTGithubHuggingface多语言模型开源项目模型维基百科自然语言处理迁移学习
distilbert-base-multilingual-cased是BERT基础多语言模型的轻量级版本,支持104种语言。该模型包含6层、768维度和12个头,总参数量为1.34亿。它在多语言维基百科数据上预训练,适用于掩码语言建模和各种下游任务的微调。与原版相比,这个模型在保持性能的同时将运行速度提高了一倍,为多语言自然语言处理任务提供了更高效的解决方案。
ultravox-v0_3 - 集成语音和文本输入的多模态AI模型
GithubHuggingfaceLlamaUltravoxWhisper多模态模型开源项目模型语音识别
Ultravox-v0_3是Fixie.ai开发的多模态语音大语言模型,结合Llama3.1-8B-Instruct和Whisper-small技术。该模型可同时处理语音和文本输入,适用于语音助手、翻译和分析等场景。通过知识蒸馏方法,仅训练多模态适配器,保持基础模型不变。Ultravox在语音识别和翻译任务中展现出优秀性能,为语音交互应用提供了新的可能性。
deepvoice3_pytorch - 基于卷积网络的文本到语音合成技术
DeepVoice3GithubPyTorch多说话者模型开源项目文本转语音预训练模型
DeepVoice3_pytorch是基于PyTorch的文本到语音深度学习平台,支持多语种和多数据集,包括英语、日语和韩语,适合多个说话者或单个说话者。项目提供预训练模型、音频样本、在线演示及详尽的训练指南,旨在简化用户的使用过程,并能灵活定制个性化的语音合成应用。
bigvgan_v2_24khz_100band_256x - 大规模训练的通用神经声码器
BigVGANGithubGradioHuggingfacePyTorch开源项目模型神经声码器音频合成
该项目通过大规模训练为神经声码器领域带来了新的发展。其自定义的CUDA内核实现了1.5至3倍的推理速度提升,满足高效应用需求。利用多尺度的子频段判别器和梅尔谱损失进行训练,适应多种音频环境,涵盖多语言语音和环境音等。项目还集成至Hugging Face Hub,提供预训练模型和交互式演示,支持最高24 kHz的采样率和多种频段配置,为语音合成领域的研究者和开发者提供便利。
brouhaha - 集成语音活动检测、信噪比和房间声学评估的开源音频分析模型
BrouhahaGithubHuggingfacepyannote开源项目房间声学模型语音噪声比语音活动检测
Brouhaha是一个基于pyannote.audio的开源音频分析模型,集成了语音活动检测、语音信噪比和C50房间声学评估功能。该模型采用多任务训练方法,在LibriSpeech、AudioSet等数据集上进行训练,能够同时处理多项语音分析任务。Brouhaha通过简单的Python接口即可使用,为语音处理和声学分析研究提供了便捷工具。该项目在GitHub上开源,为相关领域的研究人员和开发者提供了新的技术支持。
speech-emotion-recognition - 开源多模型语音情感识别系统
Emo-db数据集Github开源项目机器学习模型深度学习模型特征提取语音情感识别
speech-emotion-recognition是一个开源的语音情感识别系统,基于Emo-db数据集开发。该项目支持SVM、随机森林、神经网络、CNN和LSTM等多种机器学习和深度学习模型。系统使用Python实现,提供完整的数据预处理、特征提取和模型训练工作流程。项目设计简单易用,适合研究人员和开发者进行语音情感分析的研究和应用开发。该系统可应用于客户服务、情感计算、人机交互等领域,具有模型多样化、使用灵活、易于扩展等优点。
TowerBase-7B-v0.1 - 增强翻译及多语种任务的多语言模型性能
GithubHuggingfaceTowerBase-7BUnbabel多语言开源项目文本生成模型翻译模型
TowerBase-7B-v0.1是一个多语言模型,通过继续在Llama 2的基础上对20亿条多语种数据进行预训练,在10种主要语言中表现出色。非常适合用于翻译和相关应用任务,在AI2 Reasoning Challenge和HellaSwag等测试中展现出优异的归一化准确率。该模型支持快速无监督调优,为相应语言的研究提供支持。技术报告将提供详细信息。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号