Project Icon

FrameworkBenchmarks

Web应用框架性能评测开源基准项目

FrameworkBenchmarks是一个对Web应用框架进行性能评测的开源项目。它测试多种编程语言框架,包括Go、Python和Java等,评估纯文本响应、JSON序列化和数据库操作等性能。作为业内权威的Web框架性能评测平台,FrameworkBenchmarks为开发者提供了宝贵的参考依据。该项目提供客观数据,助力开发者选择合适框架。社区可参与贡献,持续扩展测试范围。

Welcome to TechEmpower Framework Benchmarks (TFB)

Build Status

If you're new to the project, welcome! Please feel free to ask questions here. We encourage new frameworks and contributors to ask questions. We're here to help!

This project provides representative performance measures across a wide field of web application frameworks. With much help from the community, coverage is quite broad and we are happy to broaden it further with contributions. The project presently includes frameworks on many languages including Go, Python, Java, Ruby, PHP, C#, F#,Clojure, Groovy, Dart, JavaScript, Erlang, Haskell, Scala, Perl, Lua, C, and others. The current tests exercise plaintext responses, JSON serialization, database reads and writes via the object-relational mapper (ORM), collections, sorting, server-side templates, and XSS counter-measures. Future tests will exercise other components and greater computation.

Read more and see the results of our tests on cloud and physical hardware. For descriptions of the test types that we run, see the test requirements section.

If you find yourself in a directory or file that you're not sure what the purpose is, checkout our file structure in our documentation, which will briefly explain the use of relevant directories and files.

Quick Start Guide

To get started developing you'll need to install docker or see our Quick Start Guide using vagrant

  1. Clone TFB.

     $ git clone https://github.com/TechEmpower/FrameworkBenchmarks.git
    
  2. Change directories

     $ cd FrameworkBenchmarks
    
  3. Run a test.

     $ ./tfb --mode verify --test gemini
    

Explanation of the ./tfb script

The run script is pretty wordy, but each and every flag is required. If you are using windows, either adapt the docker command at the end of the ./tfb shell script (replacing ${SCRIPT_ROOT} with /c/path/to/FrameworkBenchmarks), or use vagrant.

The command looks like this: docker run -it --rm --network tfb -v /var/run/docker.sock:/var/run/docker.sock -v [FWROOT]:/FrameworkBenchmarks techempower/tfb [ARGS]

  • -it tells docker to run this in 'interactive' mode and simulate a TTY, so that ctrl+c is propagated.
  • --rm tells docker to remove the container as soon as the toolset finishes running, meaning there aren't hundreds of stopped containers lying around.
  • --network=tfb tells the container to join the 'tfb' Docker virtual network
  • The first -v specifies which Docker socket path to mount as a volume in the running container. This allows docker commands run inside this container to use the host container's docker to create/run/stop/remove containers.
  • The second -v mounts the FrameworkBenchmarks source directory as a volume to share with the container so that rebuilding the toolset image is unnecessary and any changes you make on the host system are available in the running toolset container.
  • techempower/tfb is the name of toolset container to run

A note on Windows

  • Docker expects Linux-style paths. If you cloned on your C:\ drive, then [ABS PATH TO THIS DIR] would be /c/FrameworkBenchmarks.
  • Docker for Windows understands /var/run/docker.sock even though that is not a valid path on Windows, but only when using Linux containers (it doesn't work with Windows containers and LCOW). Docker Toolbox may not understand /var/run/docker.sock, even when using Linux containers - use at your own risk.

Quick Start Guide (Vagrant)

Get started developing quickly by utilizing vagrant with TFB. Git, Virtualbox and vagrant are required.

  1. Clone TFB.

     $ git clone https://github.com/TechEmpower/FrameworkBenchmarks.git
    
  2. Change directories

     $ cd FrameworkBenchmarks/deployment/vagrant
    
  3. Build the vagrant virtual machine

     $ vagrant up
    
  4. Run a test

     $ vagrant ssh
     $ tfb --mode verify --test gemini
    

Add a New Test

Either on your computer, or once you open an SSH connection to your vagrant box, start the new test initialization wizard.

    vagrant@TFB-all:~/FrameworkBenchmarks$ ./tfb --new

This will walk you through the entire process of creating a new test to include in the suite.

Resources

Official Documentation

Our official documentation can be found in the wiki. If you find any errors or areas for improvement within the docs, feel free to open an issue in this repo.

Live Results

Results of continuous benchmarking runs are available in real time here.

Data Visualization

If you have a results.json file that you would like to visualize, you can do that here. You can also attach a runid parameter to that url where runid is a run listed on tfb-status like so: https://www.techempower.com/benchmarks/#section=test&runid=fd07b64e-47ce-411e-8b9b-b13368e988c6. If you want to visualize them or compare different results files on bash, here is an unofficial plaintext results parser

Contributing

The community has consistently helped in making these tests better, and we welcome any and all changes. Reviewing our contribution practices and guidelines will help to keep us all on the same page. The contribution guide can be found in the TFB documentation.

Join in the conversation in the Discussions tab, on Twitter, or chat with us on Freenode at #techempower-fwbm.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号