Project Icon

chinese_speech_pretrain

中文语音预训练模型,wav2vec 2.0和HuBERT的开源实现

chinese_speech_pretrain项目开源了基于WenetSpeech数据集训练的中文语音预训练模型。项目包含wav2vec 2.0和HuBERT的BASE与LARGE版本,均使用1万小时多样化中文语音数据训练。模型在自动语音识别任务中表现优异,尤其适合低资源场景。项目提供模型下载及使用指南,可用于语音识别、语音合成等研究领域。

chinese-roberta-wwm-ext - 全词掩码技术驱动的中文BERT预训练模型
BERTGithubHuggingface中文自然语言处理开源项目整词掩码机器学习模型预训练模型
chinese-roberta-wwm-ext是哈工大讯飞联合实验室(HFL)开发的中文BERT预训练模型,采用全词掩码技术。该技术相较于字级掩码,能更有效地学习词级语义,从而提升中文自然语言处理效果。模型在多项中文NLP任务中展现出优秀性能,为相关研究和应用提供了重要基础。
wav2vec2-btb-cv-ft-btb-cy - 基于微调的语音识别模型,提升准确度与适用性
GithubHuggingfacewav2vec2开源项目损失率模型模型优化自动语音识别训练参数
此AI模型基于DewiBrynJones的wav2vec2-xlsr-53-ft-btb-cv-cy微调而成,专注提升自动语音识别精确度。评估词错误率为0.3402,表现出明显改善。使用Adam优化器,学习率为0.0003,训练批次为4。适用于高精度需求的语音识别场景,但因缺乏训练数据和用途的细节说明,适用性需谨慎评估。
wavlm-base-plus - Microsoft 全栈语音处理预训练模型
GithubHuggingfaceWavLM开源项目微软模型自监督学习语音处理预训练模型
WavLM-Base-Plus是Microsoft开发的预训练语音模型,致力于解决全栈语音处理任务。该模型在94,000小时的英语语音数据上进行自监督学习,采用改进的Transformer结构和话语混合训练策略。WavLM在SUPERB基准测试中表现优异,可应用于语音识别、音频分类等多种下游任务,为语音处理技术带来重要进展。这个预训练模型需要在特定任务上进行微调后才能使用,主要支持英语。值得注意的是,WavLM是基于音素而非字符预训练的,这一点在进行微调时需要特别注意。
japanese-hubert-large - 大规模日语语音表示学习模型HuBERT
GithubHuBERTHuggingfacerinna开源项目日语语音模型模型自监督学习语音识别
rinna公司训练的日语HuBERT Large模型采用24层transformer架构,在19,000小时ReazonSpeech语料库上训练。该模型能够提取1024维日语语音特征表示,为语音识别、合成等任务提供基础。研究人员和开发者可利用此开源模型进行各种日语语音处理应用的开发。模型采用Apache 2.0开源协议,使用方便。可通过Hugging Face transformers库轻松加载使用,支持提取日语语音特征。该项目还提供了fairseq格式的检查点文件,方便研究人员进行深入研究和二次开发。
wav2vec2-large-es-voxpopuli - Wav2Vec2大型西班牙语语音识别模型基于VoxPopuli预训练
GithubHuggingfaceVoxPopuliWav2Vec2开源项目模型自动语音识别语音语料库预训练模型
Wav2Vec2-Large-VoxPopuli是一个基于Facebook Wav2Vec2技术的西班牙语语音识别模型。该模型利用VoxPopuli语料库中的无标签西班牙语音频数据进行预训练,能够有效学习语音结构。模型适用于自动语音识别任务,可通过微调提升特定领域性能。采用CC-BY-NC-4.0许可证,为语音处理研究和开发提供了有力工具。
Bert-VITS2 - 多语言BERT驱动的语音合成模型
Bert-VITS2FishAudioGithubMassTTSTTSVITS开源项目
Bert-VITS2项目融合了多语言BERT和先进的自回归TTS模型,提供高品质的语音合成。此项目参考了MassTTS等开源项目,并推荐使用Fish-Speech。详情和演示请参见视频链接和文档,项目强调中文用户需求和法律合规,禁止违规用途。
wav2vec2-large-xlsr-53-german - 优化德语自动语音识别的开源模型
Common VoiceGithubHuggingfaceWav2Vec2开源项目德语模型深度学习语音识别
本项目利用wav2vec2-large-xlsr-53-german模型对德语Common Voice数据集进行自动语音识别,得到WER为18.5%的结果。项目采用Torchaudio和Transformers库,并使用Resample进行音频预处理。该模型在语音转文字应用中具有广泛的研究价值。
hubert-base-superb-ks - 基于HuBERT的语音命令词识别与关键词检测模型
GithubHuBERTHuggingfaceSUPERB关键词检测开源项目模型语音识别音频分类
该语音关键词检测系统基于HuBERT预训练模型开发,可识别Speech Commands数据集中的10类预设命令词、静音和未知类别。模型在测试集达到96.72%准确率,支持16kHz采样率音频输入,集成transformers pipeline接口,便于设备端快速部署和调用。
wenet - 轻量精准的全栈语音识别解决方案
GithubWeNet安装指南开源工具包开源项目文档语音识别
WeNet项目提供生产就绪的全栈语音识别方案,强调精准与轻量化。项目在多个公共语音数据集上实现了最先进效果。WeNet易于安装和使用,支持Python编程和命令行操作,并兼容多种硬件,包括Ascend NPU。通过借鉴ESPnet和Kaldi等项目,WeNet提供高效的模型训练和部署方式。用户可在GitHub或微信讨论群中参与交流,获取技术支持和项目信息更新。
wav2vec2-large-xlsr-53-esperanto - 基于XLSR-53微调的世界语语音识别模型
Common VoiceEsperantoGithubHuggingfaceWav2Vec2XLSR开源项目模型语音识别
该项目基于wav2vec2-large-xlsr-53模型,使用世界语Common Voice数据集进行微调,开发了一个世界语语音识别模型。模型在测试集上实现12.31%的词错误率(WER),支持16kHz采样率的语音输入。它可直接应用于语音识别任务,无需额外语言模型。项目详细介绍了模型的使用方法和评估过程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号