Project Icon

CapybaraHermes-2.5-Mistral-7B-GGUF

模型定量化文件与跨平台支持

项目提供了CapyBaraHermes 2.5 Mistral 7B的GGUF格式模型文件,这些文件使用Massed Compute硬件进行量化。GGUF作为GGML的替代格式,支持多种客户端和库,如llama.cpp、text-generation-webui和KoboldCpp。用户可以选择不同的定量化文件,以确保在不同平台上的最佳性能和兼容性。项目还附有详细的下载和使用指南,适合在Python等多种环境中实现模型应用。

WizardLM-13B-V1.2-GGUF - 引入GGUF格式,实现增强的Token化和特殊Token支持
GithubHuggingfaceWizardLM人工智能兼容性开源项目模型量化
WizardLM-13B-V1.2-GGUF采用llama.cpp团队发布的创新GGUF格式,替代传统的GGML。相比之下,GGUF在Token化和特殊Token支持方面更具优势,同时能够处理元数据,具有良好的扩展性。该模型兼容多种客户端和库,支持GPU加速,适合于多平台应用,提供高效推理。在量化参数选择上,该模型支持2至8位的CPU+GPU推理,以实现性能与质量的平衡。
Meta-Llama-3.1-8B-Instruct-GGUF - 高性能量化模型支持多语言文本生成
GGUFGithubHuggingfaceMeta-Llama-3.1多语言大语言模型开源项目文本生成模型
Meta-Llama-3.1-8B-Instruct模型的GGUF格式文件集支持高效推理和多语言文本生成。GGUF是llama.cpp团队推出的新格式,替代了原有的GGML。该模型适用于英语、德语、法语等8种语言的助手式对话和自然语言生成任务。项目还介绍了多种支持GGUF的客户端和库,为用户提供了灵活的使用选择。
DeepSeek-Coder-V2-Lite-Base-GGUF - 文本生成量化模型的高效选择方案
DeepSeek-Coder-V2-Lite-BaseGithubHuggingfacegguf格式开源项目文件下载模型量化高质量模型
该项目通过llama.cpp和imatrix技术对文本生成模型进行量化处理,为不同硬件配置提供优化选择。模型文件允许根据RAM和VRAM大小选择最佳方案,从而提升运行效率。K-quants在多数应用中表现理想,而I-quants提供更优性能但在硬件兼容性上有特定要求。项目提供的工具和文档为用户在进行文本生成任务的过程中提供指导,帮助选择兼顾速度与质量的量化模型。
Llama-3.2-1B-Instruct-Uncensored-GGUF - Llama小型无审查语言模型的量化实现
GGUFGithubHuggingfaceLlamatransformers开源项目模型语言模型量化模型
这是针对Llama-3.2-1B-Instruct-Uncensored模型的GGUF量化项目,提供从Q2_K到f16在内的多种量化版本。模型文件大小范围在0.7GB至2.6GB之间,通过不同的量化方案平衡了性能与存储空间。项目包含完整的性能对比数据和使用文档,方便开发者根据实际需求选择合适的模型版本。
WizardLM-7B-uncensored-GGUF - WizardLM-7B模型的GGUF格式转换与兼容性详解
GPTQGithubHuggingfaceLLMWizardlm 7B Uncensored开源项目模型量化
本文档提供了对Wizardlm 7B Uncensored模型的GGUF格式的全面介绍,涵盖了与其兼容的各种客户端和库。GGUF是一种新推出的模型格式,取代了不再支持的GGML,支持多种量化方法,可用于GPU加速并适应多种平台。该项目由Eric Hartford设计,由TheBloke进行量化,包含不同比特级别的量化版本,以便用户依据需求选择适当的模型格式和质量。本文还详细说明了下载、安装和运行这些模型的多种方法,包括Python代码示例和LangChain集成演示,为开发者提供详尽指南。
Mixtral-8x7B-Instruct-v0.1-GGUF - Mixtral-8x7B多语言模型的GGUF量化版本
AI模型GGUFGithubHuggingfaceMistral AIMixtral 8X7B开源项目模型量化
本项目提供Mixtral-8x7B-Instruct-v0.1模型的GGUF量化版本。GGUF格式支持CPU和GPU高效推理,项目包含2至8比特多种量化等级文件。模型支持英、法、意、德、西等语言,适用多种NLP任务。用户可通过llama.cpp等工具便捷运行这些模型。
Tiger-Gemma-9B-v3-GGUF - ARM推理优化与量化模型文件的综合指南
GithubHuggingfaceTiger-Gemma-9B-v3llama.cpp开源项目模型模型下载质量优化量化
Tiger-Gemma-9B-v3-GGUF项目提供了一系列专为ARM推理优化的量化模型文件,格式涵盖f16至Q2_K。项目采用llama.cpp的imatrix方法确保模型的输出和嵌入权重高精度,并允许通过huggingface-cli灵活下载文件。用户可根据设备资源选择'I-quant'或'K-quant'格式,以平衡高性能和空间效率,适用于文本生成任务的开发与研究。
Noromaid-13B-v0.3-GGUF - 高效本地部署的大规模语言模型GGUF量化版本,支持多种精度选项
AI推理GGUFGithubHuggingfaceNoromaidllama.cpp开源项目模型模型量化
Noromaid-13B模型的GGUF量化版本提供2-8位精度选项,支持CPU和GPU部署。模型采用Alpaca提示模板,与llama.cpp等框架兼容。文件大小范围为5.43GB至13.83GB,Q4_K_M版本可实现性能与质量的平衡。模型基于cc-by-nc-4.0和Meta Llama 2许可发布。
Replete-LLM-V2.5-Qwen-7b-GGUF - Qwen-7b模型GGUF量化版本集合 适配多种硬件配置
GGUFGithubHuggingfaceQwen开源项目显存优化机器学习模型量化模型
Replete-LLM-V2.5-Qwen-7b-GGUF是经LLAMA.cpp量化处理的Qwen-7b模型系列,提供24种不同量化版本。从15.24GB的F16到2.78GB的IQ2_M,涵盖多种规格以适应不同硬件。支持CPU和GPU部署,并为ARM架构优化。采用imatrix量化方案,附有详细性能说明,便于选择合适版本。
medicine-LLM-13B-GGUF - 专业级医学大语言模型GGUF格式量化版本
GGUFGithubHuggingfaceMedicine LLM医学人工智能大语言模型开源项目模型模型量化
本项目提供AdaptLLM开发的Medicine LLM 13B模型的GGUF量化版本。GGUF是llama.cpp团队推出的新格式,替代了旧有的GGML。项目包含2位到8位精度的多种量化版本,可适应不同硬件配置和性能需求。GGUF文件兼容多种客户端和库,便于用户灵活使用。量化版本在优化资源使用的同时,也保证了模型质量。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号