Project Icon

Llama-2-13B-chat-AWQ

增强Transformer模型推理效率的AWQ量化技术

Llama-2-13B-chat-AWQ项目利用AWQ低比特量化提高Transformer模型推理效率,支持4比特量化技术,相较于传统GPTQ方法,能更快速地实现多用户并发推理,降低硬件要求和部署成本。AWQ现已兼容vLLM平台进行高吞吐量推理,尽管总体吞吐量较未量化模型略有不如,但可通过较小的GPU实现高效部署,比如70B模型仅需一台48GB GPU即可运行。

docker-llama2-chat - 通过Docker快速部署LLaMA2大模型的方法介绍
DockerGithubLLaMA2MetaAITransformers开源项目量化
项目介绍了如何通过Docker快速部署LLaMA2大模型,支持官方7B、13B模型及中文7B模型。用户只需三步即可上手,并提供量化版本支持CPU推理。详细教程和一键运行脚本帮助用户轻松构建和运行模型。
openchat - 采用混合质量数据训练的高性能开源语言模型
GithubLlamaOpenChat人工智能开源开源项目语言模型
OpenChat是一个创新的开源语言模型库,采用C-RLFT策略从混合质量数据中学习。该模型在7B规模下实现了与ChatGPT相当的性能,无需偏好标签。项目致力于开发高性能、商用级的开源大语言模型,并持续进步。OpenChat支持多GPU部署,提供兼容OpenAI的API服务,适用于编码、聊天等多种任务。
llama2 - 基于Meta开源Llama 2模型的优化轻量级聊天机器人
GithubLlama 2Llama2-7BMetaReplicateStreamlit开源项目
此聊天机器人应用使用Meta的开源Llama 2模型,尤其是a16z团队部署的Llama2-7B模型。应用程序经过重构,可以轻量级部署到Streamlit Community Cloud平台。需要获取Replicate API令牌才能使用。除此之外,还可以尝试更大规模的Llama2-13B和Llama2-70B模型。
llama - 开源大语言模型推动自然语言处理发展
GithubLlamaMeta人工智能大语言模型开源开源项目
Llama 2是Meta公司开发的开源大语言模型系列,提供7B至70B参数的预训练和微调模型。该项目为研究和商业用途提供模型权重和代码,支持多样化的自然语言处理应用。Llama 2注重负责任的AI发展,实施严格的使用政策。项目包含多个仓库,构建了从基础模型到端到端系统的完整技术栈,为AI领域的创新和应用提供了重要支持。
SqueezeLLM - 硬件资源优化下的大语言模型量化服务
GithubSqueezeLLM内存优化大语言模型开源项目模型压缩量化
SqueezeLLM通过密集与稀疏量化方法降低大语言模型的内存占用并提升性能,将权重矩阵拆分为易量化的密集组件和保留关键部分的稀疏组件,实现更小内存占用、相同延迟和更高精度。支持包括LLaMA、Vicuna和XGen在内的多个热门模型,提供3位和4位量化选项,适用于不同稀疏度水平。最新更新涵盖Mistral模型支持和自定义模型量化代码发布。
Chinese-LLaMA-Alpaca-2 - 基于Meta发布的可商用大模型Llama-2开的中文LLaMA&Alpaca大模型的第二期项目
Chinese-LLaMA-Alpaca-2FlashAttention-2Github中文词表大模型开源项目长上下文
Chinese-LLaMA-Alpaca-2项目基于Meta的Llama-2模型开发,提供了全新的中文LLaMA-2基座模型和Alpaca-2指令精调大模型,专注于优化中文词表和扩展模型训练。模型支持大规模中文数据增量训练,显著提升中文语义和指令理解能力。支持4K至64K上下文长度,实现人类偏好对齐,提供多种工具支持部署和应用推广。适用于企业和研究机构进行语言模型深度研发和实用应用,如对话系统和文本分析等。
airllm - 在单个4GB GPU上运行70B大模型,无需量化和蒸馏
AirLLMGithubLlama3.1大语言模型开源项目推理优化模型压缩
AirLLM优化了推理内存使用,使70B大模型能在单个4GB GPU上运行,无需量化、蒸馏或剪枝。同时,8GB显存可运行405B的Llama3.1。支持多种模型压缩方式,推理速度可提升至3倍。兼容多种大模型,提供详细配置和案例,支持在MacOS上运行。
TinyLlama - 3万亿token训练的小型1.1B参数语言模型
AI预训练GithubTinyLlama开源项目模型评估语言模型
TinyLlama是一个使用3万亿token预训练的1.1B参数语言模型。它与Llama 2架构兼容,可集成到现有Llama项目中。TinyLlama体积小巧,适用于计算和内存受限的场景。该项目开源了预训练和微调代码,具有高效的训练和推理性能。TinyLlama可应用于推测解码、边缘计算和实时对话等领域。
KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
vllm - 高性能与易用性的LLM推理与服务平台
GithubLLM服务PagedAttentionvLLM开源项目量化高吞吐量
vLLM是一个高性能且易用的LLM推理与服务平台,具备PagedAttention内存管理、CUDA/HIP图形加速、量化支持、并行解码算法及流式输出等技术优势。vLLM无缝集成Hugging Face模型,兼容多种硬件设备,支持分布式推理和OpenAI API。最新版本支持Llama 3.1和FP8量化。用户可通过pip安装并参考详细文档快速入门。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号