Project Icon

Mythalion-13B-AWQ

利用高效的低比特量化提升Transformer推理速度

该项目提供高效的AWQ模型文件,支持4比特量化在多用户环境中实现快速Transformer推理。虽然未量化模型的整体吞吐量更高,但通过使用更小的GPU,AWQ模型显著降低了部署成本,例如仅需1台48GB GPU即可运行70B模型。该模型适合需要高吞吐量并行推理的场景,用户可借助vLLM或AutoAWQ轻松调用以降低成本并简化部署。

TinyLlama-1.1B-Chat-v0.3-AWQ - 高效量化方法助力多用户场景下的快速推理
GithubHuggingfaceTinyLlama低比特量化多用户服务器开源项目推理效率模型
该项目采用AWQ低位量化方法,提高了多用户服务器场景下的Transformers推理速度和效率。相比GPTQ,AWQ在减少部署成本的同时,能够使用更小的GPU进行推理。TinyLlama模型支持4-bit量化,并兼容vLLM与Huggingface TGI插件,高效应对高并发需求。在Zhang Peiyuan的开发下,该模型适合计算和内存资源有限的开源项目部署。
llm-awq - 激活感知权重量化技术实现大语言模型高效压缩与加速
AWQGithubLLM开源项目模型量化视觉语言模型边缘设备
AWQ是一种高效的大语言模型低比特权重量化技术,支持INT3/4量化,适用于指令微调和多模态模型。它提供预计算模型库、内存高效的4位线性层和快速推理CUDA内核。AWQ使TinyChat可在边缘设备上实现大模型高效本地推理。该技术已被Google、Amazon等采用,并获MLSys 2024最佳论文奖。
zephyr-7B-alpha-AWQ - Zephyr 7B模型AWQ量化版支持轻量级推理部署
AWQGithubHuggingfaceZephyr-7B开源项目文本生成模型模型量化深度学习
Zephyr 7B Alpha是一个基于Mistral-7B训练的对话助手模型。本版本采用AWQ量化技术将模型压缩至4位精度,使用wikitext数据集和128g量化参数进行优化。相比GPTQ,AWQ量化能提供更快的推理速度,同时显著降低显存占用,使模型可以在配置较低的GPU上高效部署运行。
Qwen2.5-32B-Instruct-AWQ - 支持128K长文本的多语言量化大模型
GithubHuggingfaceQwen2.5人工智能多语言处理大语言模型开源项目模型量化模型
Qwen2.5-32B指令微调模型经AWQ量化后参数量达32.5B,显著增强了编程和数学计算能力。模型支持29种语言交互,可处理128K tokens长文本,具备结构化数据理解和JSON生成等核心功能。基于transformers架构开发,通过量化技术实现高效部署,适用于大规模AI应用场景。
Nous-Hermes-2-Mixtral-8x7B-SFT-AWQ - 低比特量化技术如何提升模型推理性能
AI生成GithubHuggingfaceNous Hermes 2大规模语言模型开源项目权重量化模型神经网络
Nous Hermes 2 Mixtral 8x7B SFT - AWQ由NousResearch开发,采用AWQ低比特量化技术,提供快速且精确的推理能力。支持4位量化的AWQ大幅提升了Transfomers推理速度,与GPTQ设定相比,保证了等同或更佳的质量表现。在Linux和Windows系统的NVIDIA GPU上运行良好,macOS用户建议使用GGUF模型。该模型结合来自多种开放数据集的百万条目数据,通过GPT-4生成数据进行训练,实现多项任务的业界领先性能,兼容Text Generation Webui、vLLM和Hugging Face TGI等多个平台,适用于不同环境下的高性能推理。
quantized-models - 提供多源量化模型以提升大语言模型推理效率
GithubHuggingfacequantized-modelstransformers大型语言模型开源项目文本生成推理模型量化模型
quantized-models项目整合了多种来源的量化模型,旨在提高大语言模型的推理效率。模型支持者包括TheBloke、LoneStriker、Meta Llama等,提供gguf、exl2格式的支持。用户可通过transformers库便捷地进行文本生成,这些模型按现状发布,需遵循其各自的许可协议。
Qwen2.5-72B-Instruct-AWQ - 高性能量化开源大模型 支持多语言及长文本处理的人工智能助手
GithubHuggingfaceQwen2.5transformers大语言模型开源项目模型自然语言处理量化模型
Qwen2.5-72B-Instruct-AWQ是一款采用4位量化技术的大规模语言模型,具备29种语言处理能力。模型支持128K tokens的上下文理解和8K tokens的文本生成,搭载80层神经网络及64/8注意力头架构。该模型在代码生成、数学计算、结构化数据处理等方面展现出稳定性能,并可进行长文本处理和JSON格式输出。
Meta-Llama-3.1-8B-Instruct-awq-4bit - 高效4位量化的大型指令模型 适用GPU推理
AutoAWQGPUGithubHuggingfaceLlama 3.1开源项目模型自然语言处理量化
Meta-Llama-3.1-8B-Instruct模型的4位量化版本,采用AutoAWQ技术实现。This Kaitchup开发的这一版本旨在提高GPU推理效率,在保持原始性能的同时显著降低内存占用。适合在资源受限环境中运行,项目页面提供了量化过程、评估结果及使用方法的详细信息。
Mistral-7B-Instruct-v0.3-AWQ - Mistral模型AWQ量化版支持高级函数调用和三代分词
AWQ量化GithubHuggingfaceMistral-7B-Instruct-v0.3大语言模型开源项目模型模型量化自然语言处理
作为Mistral-7B-Instruct-v0.3的AWQ量化版本,该模型采用4比特压缩技术,在提供快速推理性能的同时保持了原有精度。通过扩展词汇表和引入第三代分词技术,增强了模型的理解能力。目前已集成到主流AI框架平台,可在搭载NVIDIA显卡的Linux或Windows系统上运行。
AQLM - 加性量化技术实现大型语言模型高效压缩
AQLMGithubPyTorch大语言模型开源项目推理量化
AQLM项目开发了一种名为加性量化的新技术,可将大型语言模型压缩至原规模的1/16左右,同时基本保持原始性能。该技术适用于LLaMA、Mistral和Mixtral等多种模型架构,并提供了预量化模型。项目包含PyTorch实现代码、使用教程和推理优化方案,为大规模语言模型的实际应用提供了新思路。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号