Project Icon

OpenHermes-2.5-Mistral-7B-AWQ

使用AWQ方法提升Transformer推理速度的低位量化技术

AWQ通过4-bit量化提供高效、快速的Transformer推理体验,与GPTQ相比具有更优性能。它在Text Generation Webui、vLLM、Hugging Face的Text Generation Inference和AutoAWQ等多个平台上支持,为AI应用带来了显著的性能提升,适用于多用户推理服务器的开发以及Python代码中的集成使用。

llm-awq - 激活感知权重量化技术实现大语言模型高效压缩与加速
AWQGithubLLM开源项目模型量化视觉语言模型边缘设备
AWQ是一种高效的大语言模型低比特权重量化技术,支持INT3/4量化,适用于指令微调和多模态模型。它提供预计算模型库、内存高效的4位线性层和快速推理CUDA内核。AWQ使TinyChat可在边缘设备上实现大模型高效本地推理。该技术已被Google、Amazon等采用,并获MLSys 2024最佳论文奖。
Qwen2.5-32B-Instruct-AWQ - 支持128K长文本的多语言量化大模型
GithubHuggingfaceQwen2.5人工智能多语言处理大语言模型开源项目模型量化模型
Qwen2.5-32B指令微调模型经AWQ量化后参数量达32.5B,显著增强了编程和数学计算能力。模型支持29种语言交互,可处理128K tokens长文本,具备结构化数据理解和JSON生成等核心功能。基于transformers架构开发,通过量化技术实现高效部署,适用于大规模AI应用场景。
meditron-7B-AWQ - 通过低比特量化方法优化变换器模型性能
GithubHuggingfaceMeditron 7B医疗开源开源项目推理模型量化
此项目提供EPFL LLM团队的Meditron 7B模型的AWQ量化文件,采用高效的4位低比特量化方法,在提升变换器推理速度的同时保证质量。兼容多种平台和工具,如Text Generation Webui、vLLM、Hugging Face Text Generation Inference及Transformers。
Qwen2.5-72B-Instruct-AWQ - 高性能量化开源大模型 支持多语言及长文本处理的人工智能助手
GithubHuggingfaceQwen2.5transformers大语言模型开源项目模型自然语言处理量化模型
Qwen2.5-72B-Instruct-AWQ是一款采用4位量化技术的大规模语言模型,具备29种语言处理能力。模型支持128K tokens的上下文理解和8K tokens的文本生成,搭载80层神经网络及64/8注意力头架构。该模型在代码生成、数学计算、结构化数据处理等方面展现出稳定性能,并可进行长文本处理和JSON格式输出。
TinyLlama-1.1B-Chat-v0.3-AWQ - 高效量化方法助力多用户场景下的快速推理
GithubHuggingfaceTinyLlama低比特量化多用户服务器开源项目推理效率模型
该项目采用AWQ低位量化方法,提高了多用户服务器场景下的Transformers推理速度和效率。相比GPTQ,AWQ在减少部署成本的同时,能够使用更小的GPU进行推理。TinyLlama模型支持4-bit量化,并兼容vLLM与Huggingface TGI插件,高效应对高并发需求。在Zhang Peiyuan的开发下,该模型适合计算和内存资源有限的开源项目部署。
mistral-nemo-instruct-2407-awq - Mistral-Nemo-Instruct-2407模型的AWQ量化指令版本
GithubHuggingfaceMistralNeMo人工智能大语言模型开源项目模型自然语言处理
mistral-nemo-instruct-2407-awq是Mistral-Nemo-Instruct-2407模型的AWQ量化版本。这个项目通过使用AWQ(Activation-aware Weight Quantization)技术,在保持原有模型性能的基础上,显著降低了模型大小和计算资源需求。该模型适用于各类自然语言处理任务,为开发者和研究人员提供了一个优化的大规模语言模型选择。
Qwen2.5-32B-AGI-GGUF - Qwen2.5-32B-AGI模型量化与性能优化概述
GithubHuggingfaceQwen2.5-32B-AGI开源项目文本生成权重模型模型优化量化
介绍Qwen2.5-32B-AGI在Llamacpp中的量化模型,强调文本生成性能的提升。多种量化格式(如Q8_0,Q6_K_L)满足不同需求,结合embed/output量化,适应低RAM环境。提供模型选择、下载与运行指南,含基于ARM芯片的性能优化方法。
Mistral-7B-Instruct-v0.3-AWQ - Mistral模型AWQ量化版支持高级函数调用和三代分词
AWQ量化GithubHuggingfaceMistral-7B-Instruct-v0.3大语言模型开源项目模型模型量化自然语言处理
作为Mistral-7B-Instruct-v0.3的AWQ量化版本,该模型采用4比特压缩技术,在提供快速推理性能的同时保持了原有精度。通过扩展词汇表和引入第三代分词技术,增强了模型的理解能力。目前已集成到主流AI框架平台,可在搭载NVIDIA显卡的Linux或Windows系统上运行。
Mistral-7B-OpenOrca-GPTQ - Mistral语言模型的GPTQ量化优化实现
GPTQ量化GithubHuggingfaceMistral-7B开源项目模型模型部署深度学习自然语言处理
本项目对Mistral-7B-OpenOrca模型进行GPTQ量化处理,提供4位和8位精度、多种分组大小的量化版本。通过优化存储和计算方式,在保持模型性能的同时大幅降低显存占用。项目支持text-generation-webui、Python等多种调用方式,并提供完整的使用文档。
Qwen2.5-Coder-7B-Instruct-AWQ - AWQ量化7B参数代码模型支持128K长文本处理
AWQ量化GithubHuggingfaceQwen2.5-Coder人工智能代码生成大语言模型开源项目模型
Qwen2.5-Coder-7B-Instruct-AWQ是一个AWQ量化的4比特指令微调模型,具有7B参数。该模型在代码生成、推理和修复方面表现出色,支持处理长达128K tokens的上下文。它采用28层、28个注意力头的因果语言模型架构,并应用RoPE、SwiGLU等技术。这一模型在提升编码能力的同时,保持了数学和通用领域的性能,为代码智能助手等应用提供了坚实基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号