Project Icon

Phind-CodeLlama-34B-v2-GGUF

利用GGUF格式提升模型性能,兼容多平台GPU加速

Phind's CodeLlama 34B v2采用GGUF格式,由llama.cpp团队在2023年8月21日推出替代GGML。GGUF实现了更优的标记化及特殊标记支持,并且具有可扩展性。兼容多种第三方界面与库(如text-generation-webui和KoboldCpp),并支持GPU加速。量化模型在保持高质量的同时降低了资源占用,适用多种场景,建议使用Q4_K_M与Q5_K_M模型以实现最佳性能及质量平衡。

Mistral-7B-v0.1-GGUF - 多平台支持的GGUF格式模型文件,提升推理效率
GPU加速GithubHuggingfaceMistral 7B v0.1开源模型开源项目文本生成模型量化方法
Mistral AI发布的Mistral 7B v0.1模型以GGUF格式支持多种文本生成任务。此格式由llama.cpp团队开发,替代旧的GGML格式,兼容多平台和库,包括支持GPU加速的text-generation-webui、KoboldCpp和LM Studio等。项目提供多样的量化模型文件,适配不同推理需求,保证了启发式使用中的高效性能。用户可通过简单的下载及命令行操作获取模型,并支持Python等语言的集成,为文本生成任务提供了高性能的解决方案。
claude2-alpaca-13B-GGUF - 量化GGUF格式模型文件的功能概述与应用方法
Claude2 Alpaca 13BGGUF格式GPU加速GithubHuggingface开源项目模型模型兼容性量化方法
Claude2 Alpaca 13B项目提供了多种量化的GGUF格式模型文件,用于实现硬件高效支持下的模型推理。项目由UMD的Tianyi Lab创建,并由TheBloke量化,提供多种参数选项以满足不同的推理需求。该模型兼容llama.cpp等第三方UI和库,广泛支持GPU加速,并涵盖下载范围从最小到超大内存需求的GGUF模型,适合多种使用场景。
DeepSeek-Coder-V2-Lite-Instruct-GGUF - 高性能代码模型的多版本量化优化支持多种硬件推理应用
DeepSeek-CoderGithubHuggingface人工智能代码生成开源项目模型模型压缩量化模型
本项目针对DeepSeek-Coder-V2-Lite-Instruct模型进行量化优化,提供20多种GGUF格式文件,大小从6GB到17GB不等。采用llama.cpp的imatrix技术实现高效压缩,同时保持模型性能。用户可根据硬件条件选择适合的版本,支持NVIDIA、AMD等平台的深度学习推理。
llama2_70b_chat_uncensored-GGUF - Llama2 70B Chat Uncensored推出全新GGUF格式
GGUFGithubHuggingfaceLLMLlama2开源项目模型量化
Llama2 70B Chat Uncensored项目引入了采用GGUF格式的新模型文件,与传统GGML相比,增强了性能与功能。GGUF格式在词元化和特殊标记支持方面表现出色,并支持元数据,提升了第三方UI和库的兼容性。由llama.cpp团队于2023年8月21日发布的此新格式,适合用于聊天机器人、文本生成等机器学习应用。
CapybaraHermes-2.5-Mistral-7B-GGUF - 模型定量化文件与跨平台支持
CapyBaraHermes 2.5 Mistral 7BGPU加速GithubHuggingface兼容性开源项目模型模型量化
项目提供了CapyBaraHermes 2.5 Mistral 7B的GGUF格式模型文件,这些文件使用Massed Compute硬件进行量化。GGUF作为GGML的替代格式,支持多种客户端和库,如llama.cpp、text-generation-webui和KoboldCpp。用户可以选择不同的定量化文件,以确保在不同平台上的最佳性能和兼容性。项目还附有详细的下载和使用指南,适合在Python等多种环境中实现模型应用。
Wizard-Vicuna-13B-Uncensored-GGUF - Wizard Vicuna大语言模型的GGUF量化实现
AI模型GGUFGPU加速GithubHuggingfaceLLM开源项目模型量化
Wizard Vicuna 13B模型的GGUF量化版本,提供2-bit至8-bit多种量化精度选项。GGUF作为llama.cpp最新支持的模型格式,可实现高效的本地部署和推理。模型支持CPU与GPU加速,采用Vicuna对话模板,适用于多种文本生成场景。
Noromaid-13B-v0.3-GGUF - 高效本地部署的大规模语言模型GGUF量化版本,支持多种精度选项
AI推理GGUFGithubHuggingfaceNoromaidllama.cpp开源项目模型模型量化
Noromaid-13B模型的GGUF量化版本提供2-8位精度选项,支持CPU和GPU部署。模型采用Alpaca提示模板,与llama.cpp等框架兼容。文件大小范围为5.43GB至13.83GB,Q4_K_M版本可实现性能与质量的平衡。模型基于cc-by-nc-4.0和Meta Llama 2许可发布。
MythoMax-L2-Kimiko-v2-13B-GGUF - 了解多种量化选项和GGUF格式特色
GGUFGPU加速GithubHuggingfaceMythoMax L2 Kimiko v2 13B开源项目格式兼容性模型模型量化
此项目提供MythoMax L2 Kimiko v2 13B模型在GGUF格式中的多种量化文件,优化了标记化及特殊标记支持。用户可选择适用于GPU和CPU推理的版本,并通过llama.cpp、text-generation-webui等多种客户端和库获得支持,兼具兼容性与灵活性,适合不同硬件平台的需求。
Llama-3.2-3B-Instruct-uncensored-i1-GGUF - 多种量化选项助力模型性能与效率优化
GithubHugging FaceHuggingfaceLlama-3.2-3B-Instruct-uncensored使用指南开源项目机器学习模型模型量化
项目提供多种量化选项,包括i1-IQ1_S到i1-Q6_K不同规格的GGUF文件,满足研究和开发中的多样化需求。用户可参考TheBloke的指南了解使用方法,实现实际应用中的性能和效率优化,同时保持模型输出质量与资源利用的平衡。
Llama-3.2-3B-Instruct-Q8_0-GGUF - Llama 3.2系列8位量化指令型语言模型
GGUFGithubHuggingfaceLlama-3Metallama.cpp开源项目模型语言模型
Llama-3.2-3B-Instruct-Q8_0-GGUF是Meta的Llama 3.2系列中经8位量化并转换为GGUF格式的指令微调模型。支持多语言文本生成,可通过llama.cpp在CPU或GPU上运行。模型提供命令行和服务器使用方式,适用于对话和文本生成任务。作为轻量级但功能强大的语言模型,适合开发者和研究人员使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号