Project Icon

meditron-7B-AWQ

通过低比特量化方法优化变换器模型性能

此项目提供EPFL LLM团队的Meditron 7B模型的AWQ量化文件,采用高效的4位低比特量化方法,在提升变换器推理速度的同时保证质量。兼容多种平台和工具,如Text Generation Webui、vLLM、Hugging Face Text Generation Inference及Transformers。

zephyr-7B-beta-AWQ - 基于Mistral模型优化的高性能7B开源对话模型,支持AWQ量化部署
AI模型GithubHuggingfaceZephyr 7B Beta大语言模型开源项目微调性能评估模型
Zephyr-7B-beta是基于Mistral-7B-v0.1模型的开源对话助手,采用DPO技术训练,在多项基准测试中表现优异。模型支持AWQ 4-bit量化,文件大小仅4.15GB,可通过多种框架高效部署。该项目使用MIT许可证,主要支持英语,适合研究和教育用途。
mixtral-instruct-awq - AWQ量化的Mixtral Instruct模型替代方案
AWQGithubHuggingfaceMixtral Instruct人工智能开源项目模型量化
这是一个经AWQ量化的Mixtral Instruct工作版本,旨在解决官方版本的功能问题。项目提供了Mixtral-8x7B-Instruct-v0.1模型的稳定实现,适合在资源受限环境中部署大型语言模型。该替代方案为开发者和研究人员提供了一个可靠的选择,有助于提高模型在实际应用中的效率。
Mistral-Small-22B-ArliAI-RPMax-v1.1-GGUF - AI模型量化方法提升硬件性能与资源效率
GithubHuggingfaceMistral-Small-22B-ArliAI-RPMax-v1.1基于ARM的优化开源项目性能模型模型下载量化
通过llama.cpp进行量化优化,AI模型适用于各种RAM配置和资源受限环境。多种量化选项可供选择,从高质量到低资源占用,确保最佳性能表现。适用于ARM以及其他特定硬件,通过选择I-quant和K-quant格式实现速度与质量的平衡,优化AI推理性能。
Llama-3.1-Nemotron-70B-Instruct-HF-GGUF - Llama-3.1-Nemotron-70B多级量化模型适配不同硬件
GPUGithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF人工智能开源项目模型语言模型量化
该项目为Llama-3.1-Nemotron-70B-Instruct-HF模型提供多种量化版本,涵盖Q8_0至IQ1_M级别。针对不同硬件和性能需求,项目提供详细的文件选择指南,并包含模型提示格式及下载方法说明。用户可根据设备选择适合的版本,便于快速部署和使用。
Meta-Llama-3.1-70B-Instruct-quantized.w4a16 - Meta-Llama 3.1 70B模型的INT4量化版本 性能几乎不损
GithubHuggingfaceINT4Meta-Llama-3.1vLLM开源项目模型自然语言处理量化模型
Meta-Llama-3.1-70B-Instruct模型的INT4量化版本,模型大小减少75%,但性能几乎不损。支持多语言,适用于商业和研究。可通过vLLM高效部署,在Arena-Hard、OpenLLM和HumanEval等测试中表现优异,展示出卓越的推理和编码能力。
gemma-2-9b-it-GGUF - AI语言模型量化版本满足多种硬件需求
GPU内存优化GithubHuggingfacegemma-2-9b-it开源项目文件格式转换机器学习模型模型量化
本项目提供Google Gemma 2 9B模型的多种量化版本,涵盖从高质量Q8_0到轻量级IQ2_M。详细介绍了各版本特点、文件大小和推荐用途,并附有下载使用指南。这些优化版本在保持性能的同时大幅减小体积,适配不同硬件和内存需求,使模型能在更多设备上运行。
AQLM - 加性量化技术实现大型语言模型高效压缩
AQLMGithubPyTorch大语言模型开源项目推理量化
AQLM项目开发了一种名为加性量化的新技术,可将大型语言模型压缩至原规模的1/16左右,同时基本保持原始性能。该技术适用于LLaMA、Mistral和Mixtral等多种模型架构,并提供了预量化模型。项目包含PyTorch实现代码、使用教程和推理优化方案,为大规模语言模型的实际应用提供了新思路。
EfficientQAT - 高效量化训练技术助力大型语言模型压缩
EfficientQATGithubPyTorch大语言模型开源项目模型压缩量化训练
EfficientQAT是一种针对大型语言模型的量化训练技术。该技术采用两阶段训练方法,包括分块训练所有参数和端到端训练量化参数,在压缩模型大小的同时保持性能。EfficientQAT支持GPTQ和BitBLAS等多种量化格式,已成功应用于Llama和Mistral等模型系列,有效降低模型存储需求,为大型语言模型的部署提供了实用方案。
SqueezeLLM - 硬件资源优化下的大语言模型量化服务
GithubSqueezeLLM内存优化大语言模型开源项目模型压缩量化
SqueezeLLM通过密集与稀疏量化方法降低大语言模型的内存占用并提升性能,将权重矩阵拆分为易量化的密集组件和保留关键部分的稀疏组件,实现更小内存占用、相同延迟和更高精度。支持包括LLaMA、Vicuna和XGen在内的多个热门模型,提供3位和4位量化选项,适用于不同稀疏度水平。最新更新涵盖Mistral模型支持和自定义模型量化代码发布。
BitNet-Transformers - 缩放1-bit大语言模型,提高GPU内存利用率
BitNet-TransformersGithubHuggingfaceLLama(2)Wikitext-103pytorch开源项目
BitNet-Transformers项目使用Llama (2)架构,并通过1-bit权重缩放技术,实现对大型语言模型的高效训练和推理。该项目基于Huggingface Transformers,显著降低了GPU内存占用,从原始LLAMA的250MB减少到BitNet模型的最低要求。用户可通过wandb实时追踪训练进度,并在Wikitext-103上进行训练。项目提供了详细的开发环境配置和训练步骤指南,为研究者和开发者提供有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号