Project Icon

phi-2-GGUF

以多平台兼容性著称的高效GGUF格式模型

探讨2023年8月由llama.cpp团队引入的微软Phi 2项目GGUF格式。页面包含详细的使用指南和应用案例,适合文本生成和推理。Phi 2具备跨平台兼容性和多种量化选项,支持GPU加速,是自然语言处理的良好选择。

Phi-3.5-mini-instruct-GGUF - Microsoft Phi-3.5-mini模型的GGUF格式多位宽量化版本
GGUFGithubHuggingfacePhi-3.5开源项目文本生成本地部署模型量化模型
此项目提供Microsoft Phi-3.5-mini-instruct模型的GGUF格式量化版本。GGUF是llama.cpp团队推出的新格式,取代了GGML。支持2-bit至8-bit多种量化位宽,兼容多个GGUF支持工具,如llama.cpp和LM Studio。这些工具具备GPU加速和Web界面,便于本地部署和使用大型语言模型。
Phi-3.5-mini-instruct_Uncensored-GGUF - 优化的量化模型提供多种压缩方案支持不同运行环境
GGUFGithubHuggingfaceLLMPhi-3.5llama.cpp开源项目模型量化
该项目基于llama.cpp框架,将Phi-3.5-mini-instruct模型转换为GGUF格式,提供从F16到IQ2_M共19种量化版本。模型文件大小范围在1.32GB至7.64GB之间,适配CPU和GPU环境。Q6_K、Q5_K系列及IQ4_XS等版本在性能与体积上表现均衡,可根据硬件配置选择适合的版本使用。
Phi-3.5-mini-instruct-GGUF - 高性能微软小型语言模型的量化方案
ARM芯片GGUFGithubHuggingfacePhi-3.5-mini-instruct开源项目模型模型权重量化
该项目基于llama.cpp框架,对Microsoft Phi-3.5-mini-instruct模型进行GGUF格式量化,提供从Q2到Q8等多个精度版本。每个量化版本都针对不同硬件平台进行了优化,包括针对ARM芯片的特殊优化版本。项目提供完整的模型特性对比和选择指南,帮助开发者根据实际需求选择合适的量化版本。
Phi-3-mini-4k-instruct-gguf - 轻量级通用AI模型支持推理分析与代码生成
GithubHuggingfacePhi-3人工智能大语言模型开源项目机器学习模型模型训练
Phi-3-mini-4k-instruct-gguf采用GGUF格式实现的轻量级语言模型,具备3.8B参数规模和4K上下文长度支持。该模型在常识理解、数学计算、代码生成等方面表现突出,适合在计算资源受限环境下运行。模型经过安全性优化,可用于英语场景的商业及研究应用。
Phind-CodeLlama-34B-v2-GGUF - 利用GGUF格式提升模型性能,兼容多平台GPU加速
CodeLlamaGPU加速GithubHuggingface开源项目文本生成格式转换模型模型量化
Phind's CodeLlama 34B v2采用GGUF格式,由llama.cpp团队在2023年8月21日推出替代GGML。GGUF实现了更优的标记化及特殊标记支持,并且具有可扩展性。兼容多种第三方界面与库(如text-generation-webui和KoboldCpp),并支持GPU加速。量化模型在保持高质量的同时降低了资源占用,适用多种场景,建议使用Q4_K_M与Q5_K_M模型以实现最佳性能及质量平衡。
guanaco-65B-GGUF - 解析新型GGUF格式及其多平台兼容性
GPU加速GithubGuanaco 65BHuggingfaceTim Dettmers开源项目模型模型格式量化
此项目涵盖了2023年8月21日由llama.cpp团队推出的GGUF格式,作为已停用的GGML格式的替代方案。该项目提供了多种比特的量化文件,适用于CPU和GPU的推理需求。用户能够通过多种客户端和库,如llama.cpp和text-generation-webui,下载并高效使用这些模型,提供本地及网络接口支持。所支持的量化方法包括GGML_TYPE_Q4_K,提供质量与性能的平衡。
OpenHermes-2.5-Mistral-7B-GGUF - 高效推理的新型模型文件格式
GithubHuggingfaceOpenHermes-2.5-Mistral-7B下载指南开源项目模型模型兼容性量化量化方法
GGUF是一种由llama.cpp团队于2023年8月引入的新型模型文件格式,旨在取代GGML,不再受其支持。该格式兼容众多第三方用户界面及库,例如llama.cpp、text-generation-webui和KoboldCpp等平台,这些平台支持GPU加速,从而提高文本生成任务的效率。Teknium的OpenHermes 2.5 Mistral 7B模型在此格式下得以量化处理,通过多种量化方法平衡模型文件大小与推理质量,适用于包括CPU+GPU推理在内的多种场景。用户在多种设备和平台上使用该格式能获取所需模型,并通过Massed Compute的硬件支持获得性能优化。
Open_Gpt4_8x7B_v0.2-GGUF - 提供多格式兼容量化模型,提升推理效率
GGUFGithubHuggingfaceOpen Gpt4 8X7B V0.2rombo dawg开源项目模型模型兼容性量化
此项目提供GGUF格式的多精度量化模型文件,旨在优化CPU和GPU的推理效率。作为GGML的替代,GGUF与多种第三方UI和库兼容,支持多平台AI模型的高效运行。项目包含2至8位量化模型以满足不同精度与内存要求,适合多种场景需求。通过详细的下载指导,用户能快速找到适合的模型文件,并利用llama.cpp、text-generation-webui等高性能运行时实现模型在不同硬件上的高效推理。
CodeLlama-13B-GGUF - GGUF格式的创新特点与适用范围
CodeLlama 13BGithubHuggingfaceMeta开源项目机器学习模型模型格式量化
Meta推出的GGUF格式替代了GGML,优化了编码生成的效能和兼容性。它增强了标记处理和元数据支持,并适用于多种程序和库,如llama.cpp和text-generation-webui。这种格式推动了编码模型的发展,提供了便于GPU加速和降低内存需求的量化模型,提升了开发者的灵活性和解决方案质量。
guanaco-33B-GGUF - Guanaco 33B模型的高效量化格式,支持多平台部署
GPU加速GithubGuanaco 33BHuggingfaceTim Dettmers开源项目模型模型格式量化
该项目提供的GGUF格式量化模型文件针对Guanaco 33B进行了优化,适用于多种平台,包括llama.cpp和text-generation-webui。作为GGML的替代格式,GGUF引入了改良的量化方法,支持2到8位的量化,满足各种硬件资源需求。其优势在于提高AI推理性能与效率,并支持GPU加速,适合对AI生成及推理质量有较高要求的应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号