Project Icon

simpletransformers

快速构建和优化Transformer模型的开源工具

simpletransformers是一个基于Hugging Face Transformers的开源工具,通过简化的API让用户能够用少量代码快速构建和优化Transformer模型。该库支持文本分类、命名实体识别、问答系统等多种NLP任务,为研究人员和开发者提供了便捷的方式来应用这些强大的模型。simpletransformers具有直观的接口和丰富的功能,可用于各类自然语言处理场景,有效降低了使用Transformer模型的门槛。

ByteTransformer - 为BERT类Transformer优化的高性能推理库
BERTByteTransformerGithubNVIDIA GPUTransformer开源项目高性能
ByteTransformer是一个为BERT类Transformer优化的高性能推理库,支持Python和C++ API,兼容固定长度和可变长度Transformer。通过对BERT例程中的QKV编码、软最大值、前馈网络、激活、层归一化和多头注意力机制进行优化,ByteTransformer为字节跳动的内部推理系统提升了性能。基准测试结果显示,相较于PyTorch、TensorFlow、FasterTransformer和DeepSpeed,ByteTransformer在A100 GPU上的推理速度更快。
sentence-transformers-multilingual-e5-small - 多语言句子相似性和分类模型,覆盖多种语言选择
AmazonReviewsGithubHuggingfacemultilingual-e5-small分类句子相似性多语言开源项目模型
该项目提供多语言句子相似性和分类功能,适用范围广泛。采用MIT许可证,通过英语、德语、法语、西班牙语和中文等语言实现较高的精准度。通过Amazon反事实分类和情感极性任务表现出色,涵盖丰富的数据集和评估任务,如重排序和语义文本相似等,有效支持文本分类及自动化分析。
easyllm - 开源工具库助力简化大语言模型应用开发
API客户端EasyLLMGithubOpenAI兼容大语言模型开源项目
EasyLLM是一个开源项目,为开发者提供简化大语言模型操作的工具和方法。该项目实现了兼容OpenAI API的客户端,支持HuggingFace、Amazon SageMaker和Amazon Bedrock等平台的模型。EasyLLM允许开发者轻松切换不同语言模型,实现聊天、文本补全和嵌入等功能。此外,项目还包含进化指令生成和提示词工具等辅助模块,有效简化了大语言模型的应用开发流程。
fasttext-en-vectors - 多语言词向量学习和文本分类开源库
GithubHuggingfacefastText开源项目文本分类机器学习模型自然语言处理词向量
fastText是一个开源轻量级库,专注于词向量学习和文本分类。它支持157种语言,可在普通硬件上快速训练,并提供预训练模型。fastText适用于文本分类、语言识别等任务,从实验到生产均可使用。该库简单易用,能在短时间内处理海量文本,是自然语言处理领域的高效工具。
transformers-code - 对Transformers从入门到高效微调的全方位实战指南
GithubNLPTransformers分布式训练开源项目微调模型训练
课程提供丰富的实战代码和案例,从基础入门到高效微调以及低精度和分布式训练。涵盖命名实体识别、机器阅读理解和生成式对话机器人等NLP任务。帮助深入理解Transformers的核心组件和参数微调技术,包括模型优化和分布式训练。适合对Transformers应用和实践感兴趣的学习者。课程在B站和YouTube持续更新,紧跟技术前沿。
small - Funnel Transformer小模型助力有效的英文处理
Funnel TransformerGithubHugging FaceHuggingfaceTransformer模型开源项目模型英语语言处理预训练
Funnel Transformer是一款基于自监督学习的预训练英语模型,使用丰富的公共数据集进行训练,类似ELECTRA的目标,通过区分原始与替换标记来学习语言特征。模型不区分大小写字母,适合用于序列分类、标记分类和问答任务。访问模型中心可获取进行特定任务的微调版本。
course - 学习如何将Transformers应用于各类自然语言处理任务
GithubHugging FaceTransformers免费开源开源项目翻译自然语言处理
此课程讲解如何将Transformers应用于自然语言处理及其他任务,并介绍Hugging Face生态系统的使用,包括Transformers、Datasets、Tokenizers和Accelerate工具,以及Hugging Face Hub。课程完全免费且开源,支持多语言翻译学习,旨在推广机器学习。对于翻译课程感兴趣的用户,可在GitHub上开issue并加入Discord讨论。
best_2b - Hugging Face Transformers模型概述及应用指南
GithubHuggingfacetransformers开源项目机器学习模型模型卡片模型评估自然语言处理
本文详细介绍了一个Hugging Face Transformers模型的关键特性。内容涵盖模型架构、应用场景、潜在局限性、训练过程、评估方法及环境影响等方面。文档不仅帮助读者全面了解模型性能,还提示了使用中需要注意的问题。对于想要深入探索或应用这一先进语言模型的研究人员和开发者来说,本文是一份极具参考价值的资料。
exporters - 将Transformer模型高效转换为Core ML格式
Core MLGithubHuggingFacePyTorchTensorFlowTransformers开源项目
🤗 Exporters工具包旨在简化将Transformer模型转换为Core ML格式的过程,避免手动编写转换脚本。它与Hugging Face Transformers库紧密集成,并提供无代码转换体验,支持BERT和GPT-2等多种模型架构。工具包可在Linux和macOS平台上运行,利用coremltools实现从PyTorch或TensorFlow到Core ML的转换,并通过Hugging Face Hub进行模型管理,提升模型转换和部署的便捷性及灵活性。
distilbert-base-uncased - 紧凑高效的语言模型,提升下游任务处理速度
DistilBERTGithubHuggingface使用限制开源项目模型模型压缩训练数据语言模型
DistilBERT是一种高效的Transformers模型,比原始BERT更小更快,适合快速推理的下游任务。通过自监督预训练,它支持掩码语言建模和句子预测。主要用于全句任务如分类和问答,尽管继承了部分原模型偏见。在海量公开数据的支持下,DistilBERT在多种任务中表现优异,兼顾性能和速度。可在模型中心查看微调版本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号