Project Icon

TinyLlama-1.1B-Chat-v0.3

轻量级高性能AI聊天助手 基于3万亿token训练

TinyLlama-1.1B-Chat-v0.3是一个基于Llama 2架构的轻量级开源语言模型,使用1.1B参数在3万亿tokens上预训练。模型采用OpenAssistant数据集微调,支持chatml格式,具有部署灵活、资源占用少等特点。TinyLlama保持了与Llama生态系统的兼容性,同时适用于计算资源受限的场景,为AI聊天应用提供了一个高效实用的解决方案。

TinyLlama-1.1B-intermediate-step-1195k-token-2.5T - TinyLlama项目中的1.1B模型实现高效计算
GithubHuggingfaceLLama 2TinyLlama优化开源项目模型模型参数预训练
TinyLlama通过创新方法,在2.5万亿tokens数据集上实现预训练,紧凑的1.1B参数设计提高了计算和内存效率,适用于多种开源项目。
Llama-2-7b-chat-hf - 开源对话模型 强大性能与安全性兼备
GithubHuggingfaceLlama 2Meta人工智能大型语言模型开源项目模型自然语言处理
Llama-2-7b-chat-hf是Meta开发的大型语言模型,针对对话场景进行了优化。该模型在多数基准测试中超越了其他开源聊天模型,其有用性和安全性与部分知名封闭源模型相当。模型基于transformer架构,通过监督微调和人类反馈强化学习提升了帮助性和安全性。Llama-2-7b-chat-hf支持多种商业和研究应用,适用于助手式聊天等任务。使用时需按特定格式输入以获得最佳性能。
TinyLlama-1.1B-intermediate-step-1431k-3T - 快速训练的轻量级1.1B参数Llama模型
GithubHuggingfaceTinyLlama开源项目性能评估模型语言模型预训练
TinyLlama-1.1B是一个在3万亿个token上预训练的小型Llama模型。采用Llama 2架构,该模型用16个A100 GPU在90天内完成训练,展现高效性。紧凑设计适合资源受限场景,在多项基准测试中表现不俗,可轻松集成到基于Llama的开源项目中。
Llama-2-7b-chat-hf - Meta开发的70亿参数对话语言模型
GithubHuggingfaceLlama 2人工智能元宇宙大语言模型开源项目模型自然语言处理
Llama-2-7b-chat-hf是Meta开发的大型语言模型,专为对话场景优化。该模型拥有70亿参数,采用优化的Transformer架构,通过监督微调和人类反馈强化学习提高了效果。它适用于助手式聊天等自然语言生成任务,在多项基准测试中表现出色,有用性和安全性可与部分闭源模型相媲美。
Llama3-Chinese-Chat - 基于Llama 3的中英双语优化大语言模型
ChineseGithubLlama3人工智能开源项目自然语言处理语言模型
Llama3-Chinese-Chat项目基于Meta-Llama-3-8B-Instruct模型开发,采用ORPO方法优化训练,大幅提升中英双语交互能力。该模型具备角色扮演、工具使用等功能,提供多种版本选择。最新v2.1版本在数学、角色扮演和函数调用方面性能显著提升,训练数据集扩充至10万对。项目同时提供Ollama模型和量化版本,便于快速部署使用。
Llama-2-70b-chat-hf - Meta开发的700亿参数对话型语言模型
GithubHuggingfaceLlama 2Meta人工智能大语言模型开源项目模型自然语言处理
Llama-2-70b-chat-hf是Meta开发的大型语言模型,拥有700亿参数。该模型经过对话微调,适用于助手式聊天等场景,在多数基准测试中优于开源聊天模型。Llama 2系列采用优化的transformer架构,通过监督微调和人类反馈强化学习提升性能。模型支持英语商业和研究用途,可用于各种自然语言生成任务。
Llama-2-13b-chat-hf - Meta开发的130亿参数大语言模型支持多种自然语言处理任务
GithubHuggingfaceLlama 2人工智能大语言模型对话系统开源项目模型模型训练
Llama-2-13b-chat-hf是Meta开发的大规模语言模型,拥有130亿参数。该模型经过对话任务微调,在多项基准测试中表现优异,支持文本生成、问答等自然语言处理任务。Llama-2采用公开数据集训练,不含Meta用户数据,提供商业许可。此Hugging Face版本便于研究和开发使用。
TinyLlama-1.1B-intermediate-step-955k-token-2T - 探讨紧凑型1.1B参数模型的高效预训练
GithubHuggingfaceTinyLlama参数开源项目模型计算预训练
TinyLlama项目目标是在3万亿标记上预训练一个具备1.1B参数的Llama模型。通过优化技术,该项目可在90天内使用16个A100-40G GPU完成训练。采用与Llama 2相同的架构和分词器,确保与其他开源项目的兼容性。TinyLlama的紧凑设计适合计算和内存受限的应用。该项目于2023年9月1日启动,计划在2023年12月1日前完成,并会逐步发布中间检查点。详细信息请查看TinyLlama GitHub页面。
TinyLLama-v0 - 基于Llama架构的轻量级开源文本生成模型TinyLLama
GithubHuggingfaceLlamaTinyStories开源项目模型模型训练神经网络自然语言处理
TinyLLama-v0是一个基于Llama架构的轻量级语言模型项目,重现了TinyStories-1M的功能。项目提供完整训练流程,包括数据准备、模型训练和验证脚本。它使用open_llama_3b分词器,在40GB A100 GPU上训练3小时/轮,共9小时。虽处于概念验证阶段,存在长文本截断等限制,但TinyLLama-v0为开发者提供了探索小型语言模型的平台。项目包含演示脚本和验证工具,适用于文本生成等自然语言处理任务研究。
TinyLlama-1.1B-Chat-v0.3-GGUF - 探索TinyLlama 1.1B Chat v0.3的GGUF格式模型
GGUFGPU加速GithubHuggingfaceTinyLlama兼容性开源项目模型量化方法
项目为TinyLlama 1.1B Chat v0.3提供GGUF格式模型,该格式由llama.cpp团队于2023年推出,支持多种客户端和库如text-generation-webui和LM Studio,并提供GPU加速。用户可获取不同量化参数的模型文件,以适应各种需求。项目还详细介绍了在命令行、Python代码及LangChain中使用模型的方法,帮助技术用户在多平台上实现高效运行。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号