Project Icon

TinyLlama-1.1B-step-50K-105b

紧凑型1.1B参数模型的高效预训练项目

TinyLlama是一个旨在高效预训练1.1B参数模型的项目,使用3万亿个token,计划在90天内完成。其架构和tokenizer与Llama 2相同,适用于多种需要低计算和内存需求的应用。该项目的中期里程碑在50K步和105B tokens,成果显著。利用16块A100-40G GPU进行优化训练,提升效率并节省资源。TinyLlama与多个开源项目兼容,便于通过transformers库进行集成。更多详情可查阅TinyLlama的GitHub页面。

Llama-3.1-Nemotron-70B-Instruct-bnb-4bit - 基于Unsloth技术的大语言模型高性能微调框架
GithubHuggingfaceLlama 3.1NVIDIA代码优化开源项目模型模型微调深度学习
Unsloth优化的Llama 3.1 Nemotron 70B指令模型,在保持模型性能的同时实现内存占用降低70%、训练速度提升2-5倍的优化效果。该框架支持Llama 3.2、Mistral、Phi-3.5等主流大语言模型的微调,提供适配Google Colab的入门级notebooks,支持GGUF、vLLM等多种导出格式。
Llama-3.2-3B-bnb-4bit - Unsloth技术优化Llama-3.2模型微调 加速训练节省内存
GithubHuggingfaceLlama 3.2Unsloth多语言大语言模型开源项目微调模型
Llama-3.2-3B-bnb-4bit项目应用Unsloth技术优化模型微调,将训练速度提高2.4倍,同时减少58%内存使用。项目为Llama-3系列、Gemma 2和Mistral等多个模型提供免费Colab笔记本,便于初学者进行高效模型微调。此外,还包括对话型、文本补全型专用笔记本和DPO技术应用示例,全面支持各类模型优化需求。
Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic - 多语种量化优化模型,显著降低内存占用
GithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic多语言支持开源项目文本生成模型模型优化量化
通过将权重和激活量化为FP8格式,该项目优化了Llama-3.1-Nemotron模型,显著降低了GPU内存与磁盘的占用。模型适用于商业与研究,支持多语言开发和会话助手的构建。利用vLLM,可以实现高效部署并具有OpenAI兼容性。Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic在诸多测试中表现优良,在Arena-Hard评估中达99.41%的恢复率。
AMD-Llama-135m - 轻量级语言模型实现高效推理加速
AMD-Llama-135mGithubHuggingface开源项目机器学习模型神经网络语言模型预训练
AMD-Llama-135m是一个基于LLama2架构的135M参数语言模型,在AMD Instinct MI250加速器上训练。该模型与huggingface transformers兼容,并使用LLama2相同的分词器。模型可独立使用,也可作为LLama2和CodeLlama的推理加速辅助模型。经SlimPajama和Project Gutenberg数据集预训练,以及StarCoder Python代码数据集微调后,模型在多项NLP基准测试中表现优异。通过推理加速技术,吞吐量可提升至3.88倍。
tiny_random_llama2 - 精简版Llama 2模型助力CI测试效率提升
CI测试GithubHuggingfaceLlama 2人工智能开源项目机器学习模型
tiny_random_llama2是一个专为持续集成(CI)测试设计的精简版Llama 2模型。该模型保留了Llama 2的核心架构,但显著降低了规模,实现了快速加载和执行。它主要用于CI环境中高效测试Llama 2相关功能,无需消耗大量计算资源。这个轻量级版本使开发团队能够更快速、经济地进行回归测试和性能评估,提高了CI流程的整体效率。
Llama-2-13b-hf - Meta开源130亿参数大语言模型 超强功能与安全性并存
GithubHuggingfaceLlama 2人工智能大语言模型开源项目机器学习模型自然语言处理
这是Meta开发的开源预训练语言模型,采用优化的Transformer架构,具有130亿参数。该模型支持4k上下文长度,经2万亿token训练,在多项基准测试中表现优异。模型可用于对话及各类自然语言生成任务,适合商业和研究用途。训练数据来自公开数据集,并通过人类反馈强化学习提升了模型性能和安全性。
Llama-3.1-70B - Meta Llama 3.1 突破性多语言大模型 支持128K上下文
GithubHuggingfaceMeta人工智能多语言大语言模型开源项目模型自然语言处理
Llama 3.1是Meta推出的最新多语言大型语言模型系列,包含8B、70B和405B三种参数规模。模型采用优化的Transformer架构并经指令微调,在多语言对话场景中表现卓越。Llama 3.1具备128K上下文窗口,能够生成文本和代码,广泛适用于商业和研究领域。在众多行业基准测试中,Llama 3.1展现出优异性能,超越了大量主流开源和专有对话模型。
Llama-3.2-1B - Meta推出多语言大规模语言模型 支持多种商业和研究场景
GithubHuggingfaceLlama 3.2人工智能多语言大语言模型开源项目模型自然语言处理
Llama-3.2-1B是Meta开发的多语言大规模语言模型,支持8种语言。采用优化的Transformer架构,经9T token训练,具128K上下文长度。适用于对话、检索、摘要等任务,性能优于多数开源和闭源模型。支持商业和研究用途,可开发AI助手、写作工具等。提供原始和量化版本,适应不同计算资源需求。该模型在多语言处理和应用灵活性方面表现出色。
Llama-3.2-11B-Vision-Instruct-bnb-4bit - Llama 3.2视觉语言模型的4bit优化版实现快速低资源微调
GithubHuggingfaceLlama 3.2Meta大语言模型开源项目模型模型微调深度学习
Llama 3.2系列模型的4bit优化版专注多语言对话和视觉语言处理。Unsloth优化提升训练速度2.4倍,节省58%内存。支持8种官方语言,适用对话生成、检索和总结任务。采用优化Transformer架构,通过SFT和RLHF实现人类偏好对齐,保证高效性能和安全性。该版本为开源社区提供了更易于部署和微调的Llama 3.2模型选择。
Meta-Llama-3.1-8B-bnb-4bit - Unsloth技术实现高效低资源的Llama 3.1模型微调
GithubHuggingfaceLlama 3.1Transformers大语言模型开源项目性能优化模型模型微调
该项目利用Unsloth技术对Meta-Llama-3.1-8B模型进行高效微调,节省58%内存并将训练速度提升2.4倍。提供多个免费Google Colab笔记本,支持Llama-3.1、Gemma-2、Mistral等模型的微调,便于获得性能优化的定制模型。适合资源受限的研究者和开发者使用,实现低成本高效率的大语言模型优化。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号