Project Icon

TinyLlama-1.1B-step-50K-105b

紧凑型1.1B参数模型的高效预训练项目

TinyLlama是一个旨在高效预训练1.1B参数模型的项目,使用3万亿个token,计划在90天内完成。其架构和tokenizer与Llama 2相同,适用于多种需要低计算和内存需求的应用。该项目的中期里程碑在50K步和105B tokens,成果显著。利用16块A100-40G GPU进行优化训练,提升效率并节省资源。TinyLlama与多个开源项目兼容,便于通过transformers库进行集成。更多详情可查阅TinyLlama的GitHub页面。

llama-lora-fine-tuning - 单GPU微调LLaMA模型的高效方法
GPUGithubLLaMAVicuna开源项目微调语料库
本项目展示了在单个16G GPU上微调vicuna-7b模型的方法。通过采用LoRA、半精度模型和8位加载等技术,有效降低了内存需求。项目详细说明了环境配置、模型准备、语料处理和微调过程,并提供P100和A100的性能数据。这种方法使研究者和开发者能在有限硬件资源下进行大型语言模型的定制化训练。
Llama-3.2-1B-Instruct-GGUF - Llama 3.2模型的多精度量化版本
GithubHuggingfaceLlama人工智能开源开源项目模型语言模型量化
Llama-3.2-1B-Instruct-GGUF是Llama 3.2模型的量化版本,使用llama.cpp和imatrix方法进行处理。该项目提供从f16到Q3_K_XL多种精度选项,文件大小在0.80GB至2.48GB之间。这些模型支持多语言处理,适合在资源受限的设备上运行,用户可根据需求选择合适版本以平衡性能和资源占用。
Llama-3.2-1B-Instruct - Unsloth技术加速大型语言模型微调 提升效率降低资源消耗
GithubHuggingfaceLlama 3.2Unsloth内存优化多语言支持开源项目模型模型微调
Llama-3.2-1B-Instruct项目利用Unsloth技术优化大型语言模型微调过程。该方法可将微调速度提升2-5倍,同时减少70%内存占用。项目提供多个Google Colab笔记本,支持Llama 3.2、Gemma 2和Mistral等模型的高效微调。这一创新技术为AI语言模型开发提供了更高效的解决方案,有助于推动相关领域的进步。
Llama-3.2-1B-Instruct-bnb-4bit - Unsloth技术加速大型语言模型微调
GithubHuggingfaceLlama 3.2TransformersUnsloth开源项目性能优化模型模型微调
本项目展示了利用Unsloth技术微调Llama 3.2等大型语言模型的方法。该技术可将微调速度提升2-5倍,同时降低70%内存占用。项目为Llama 3.2、Gemma 2和Mistral等多个模型提供免费Google Colab笔记本,便于用户进行模型微调。这一方法适合各层级用户,能有效提升模型训练效率。
Llama-3.2-1B - 提升2.4倍速度的语言模型微调框架
GithubHuggingfaceLlama 3.2Unsloth内存优化多语言支持开源项目模型模型微调
Meta发布的Llama-3.2-1B是一款支持8种语言的大规模语言模型。通过集成Unsloth工具,该项目实现了模型微调速度提升2.4倍、内存占用降低58%的性能优化。项目提供Google Colab环境支持,可快速进行模型训练,并支持将成果导出为GGUF、vLLM格式或部署至Hugging Face平台。
TinyLLM - 在本地硬件上构建小型LLM,支持多种模型和ChatGPT界面
ChatGPTGithubOllamaTinyLLMllama.cppvLLM开源项目
该项目帮助用户在消费级硬件上构建小型本地LLM,并提供类似ChatGPT的网页界面。支持通过Ollama、llama-cpp-python和vLLM搭建兼容OpenAI API的服务,允许访问外部网站、矢量数据库等。具备详尽的硬件要求和模型下载链接,方便用户快速上手并使用自定义提示进行互动。
Llama3-8B-1.58-100B-tokens-GGUF - Llama 3模型的GGUF格式优化版本
GithubHuggingfaceLlama3llama.cpp命令行界面开源项目推理模型模型转换
本项目提供Llama3-8B-1.58模型的GGUF格式版本,基于Meta-Llama-3-8B-Instruct模型转换而来。支持通过llama.cpp进行快速部署和推理,包括命令行界面和服务器模式。项目详细介绍了llama.cpp的安装、使用方法,以及从GitHub克隆和构建的步骤,方便开发者进行硬件优化和自定义配置。这一优化版本旨在提高模型的部署效率和推理性能。
CodeLlama-7b-hf - 大规模预训练模型助力代码生成与解析
GithubHuggingfaceLLAMA 2Python代码合成使用政策开源项目模型模型参数
Code Llama是一套从7亿到340亿参数的生成文本模型,设计用于代码合成与理解。这些模型基于Hugging Face Transformers架构,提供7B基础版本,具备代码补全和填充功能。针对Python的特定变体也已开发,以便提供更佳的技术支持。探索Code Llama可以如何为项目提供技术支持,满足多样的商业与研究需求。
llama3 - Llama 3开源大语言模型 推动AI创新与责任发展
GithubLlama 3Meta人工智能大语言模型开源开源项目
Meta推出Llama 3系列大语言模型,参数规模从8B到70B不等,包含预训练和指令微调版本。该系列面向广泛用户群体开放,旨在推动负责任的AI创新。Llama 3具备8192个token的序列处理能力,并提供便捷的加载和推理代码。模型权重和分词器可通过官方网站或Hugging Face平台获取。
BitNet-Transformers - 缩放1-bit大语言模型,提高GPU内存利用率
BitNet-TransformersGithubHuggingfaceLLama(2)Wikitext-103pytorch开源项目
BitNet-Transformers项目使用Llama (2)架构,并通过1-bit权重缩放技术,实现对大型语言模型的高效训练和推理。该项目基于Huggingface Transformers,显著降低了GPU内存占用,从原始LLAMA的250MB减少到BitNet模型的最低要求。用户可通过wandb实时追踪训练进度,并在Wikitext-103上进行训练。项目提供了详细的开发环境配置和训练步骤指南,为研究者和开发者提供有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号