Project Icon

PFLlib

个性化联邦学习算法库和评估平台

提供36种传统和个性化联邦学习算法,涵盖3种场景和20个数据集。专注于统计异质性数据,支持高效GPU内存使用及新增的隐私保护功能。新手用户通过简单的示范指南即可快速上手,参与贡献算法、数据集和评估指标。支持非独立同分布和不均衡数据,并可在多达500个客户端上进行训练模拟。

FL-bench - 开源联邦学习基准测试平台
FL-benchGithub个性化联邦学习开源项目算法实现联邦学习领域泛化
FL-bench是一个开源的联邦学习基准测试平台,实现了多种经典和前沿算法。平台支持个性化联邦学习和域泛化等研究方向,提供简单接口用于自定义数据集和模型。集成了可视化工具,方便研究人员快速实现和对比不同方法。FL-bench旨在促进联邦学习领域的创新与发展。
openfl - 开源联邦学习框架助力隐私保护数据协作
GithubOpenFLPython框架开源项目数据隐私机器学习联邦学习
OpenFL是一个开源的Python联邦学习框架,支持多种工作流程和深度学习框架。它专为数据科学家设计,提供灵活可扩展的实验环境,适用于医疗影像等敏感数据场景。该框架由Linux基金会托管,提供多种联邦聚合算法,并欢迎社区贡献。
OpenFedLLM - 联邦学习框架助力大型语言模型隐私数据训练
GithubOpenFedLLM大语言模型开源开源项目模型训练联邦学习
OpenFedLLM是一个开源研究代码库,专注于利用联邦学习技术训练大型语言模型。该项目整合了多种联邦学习算法和LLM训练方法,并提供全面的评估指标。通过支持指令微调和价值对齐,OpenFedLLM为研究人员提供了在分散私有数据上进行LLM训练的有力工具,助力隐私保护和模型性能优化研究。
MetisFL - 强大、高效、安全的联邦学习开源框架
BazelDockerGithubMetisFL开源框架开源项目联邦学习
MetisFL是一个基于C++和Python3的开源联邦学习框架,注重可扩展性、效率和安全性。该框架提供完整的联邦学习工作流程,支持多种操作系统,并支持Docker容器部署。MetisFL主要应用于需要保护数据隐私的分布式机器学习场景,为研究人员和开发者提供实用工具。
FedScale - 可扩展的开源联邦学习(FL)引擎和基准测试平台
FedScaleGithub开源项目数据集模型评估联邦学习部署
FedScale是一个可扩展的开源联邦学习(FL)引擎和基准测试平台,提供高级API用于实现FL算法,并在多种硬件和软件环境中进行大规模部署和评估。FedScale包括大规模的FL基准测试,涵盖图像分类、对象检测、语言建模和语音识别等任务,同时提供数据集真实模拟FL训练环境。用户可以通过简单的安装流程在Linux和MacOS上快速部署,并利用丰富的教程和数据集开展实验。
Awesome-FL - 联邦学习资源汇总与最新研究进展
Artificial IntelligenceComputer VisionData MiningFederated LearningGithubMachine Learning开源项目
该页面汇总了联邦学习领域的重要资源,包括顶级期刊与会议中的论文、框架、数据集、调研、教程和课程。同时涵盖了联邦学习在图数据和表格数据上的应用,以及在人工智能、机器学习、数据挖掘等多个领域的研究成果。通过该页面,用户可以追踪最新的联邦学习论文更新,并有机会参与讨论和贡献资源。
tensorflow-federated - 隐私保护的分布式机器学习框架
GithubTensorFlow Federated分散数据开源框架开源项目机器学习联邦学习
TensorFlow Federated是一个开源框架,用于分布式数据的机器学习和计算。它提供高级和低级API,允许开发者在保护隐私的同时利用分散数据进行模型训练和评估。支持自定义联邦学习算法,包含单机模拟环境,适合研究和实验。除了预测模型训练,还可用于分布式数据的聚合分析。
FATE - 开源工业级联邦学习框架
FATEGithub人工智能开源框架开源项目数据安全联邦学习
FATE是首个工业级开源联邦学习框架,支持企业在确保数据安全和隐私保护的前提下进行协作。基于同态加密和多方安全计算,FATE提供多种联邦学习算法,涵盖逻辑回归、树模型和深度学习等。作为Linux基金会托管项目,FATE致力于推动联邦AI技术在各行业的应用与发展。
LLM-RLHF-Tuning - RLHF三阶段训练支持指令微调、奖励模型和多种训练方式
DPOGithubLLaMALLaMA2PPORLHF开源项目
本项目实现了RLHF的三阶段训练,包括指令微调、奖励模型训练和PPO算法训练。支持LLaMA和LLaMA2模型,并提供多种分布式加速训练方法。项目附有详细的实现文档,并对比了其他开源框架的功能,是RLHF训练的宝贵资源。
flower - 用于构建联合学习系统的框架
AI研究Flower联邦学习
Flower 是一个高度可定制和可扩展的联邦学习框架,源自牛津大学的研究项目。支持包括 PyTorch、TensorFlow 和 Hugging Face Transformers 在内的多种机器学习框架。Flower 的设计原则包括可定制、可扩展、框架无关和易于理解,旨在为用户提供构建先进联邦学习系统的工具。通过详细的教程和文档,Flower 使联邦学习变得易于上手,并鼓励社区贡献和参与。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号