Project Icon

torchinfo

高级模型结构查看工具,适用于PyTorch

Torchinfo 提供了类似 TensorFlow `model.summary()` API 的功能,可视化和调试 PyTorch 模型。支持包括 RNN 和 LSTM 在内的多种层,并返回 ModelStatistics 对象。项目拥有简洁界面、多种自定义选项和详细文档,适用于 Jupyter Notebook 和 Google Colab,且经过综合单元测试和代码覆盖测试验证。

torchmd - 开源分子动力学模拟框架
GithubPyTorchTorchMD分子动力学力场开发开源项目神经网络势能
TorchMD是一个开源的分子动力学模拟框架,基于PyTorch构建。它为研究人员提供简单易用的API,支持力场开发和神经网络势能的无缝集成。TorchMD使用与传统MD软件兼容的化学单位,适用于多种分子模拟任务。该项目正在积极开发中,由Chan Zuckerberg Initiative和Acellera资助,并与OpenMM和ACEMD展开合作。TorchMD适用于蛋白质折叠、药物设计、材料科学等领域的分子动力学研究。研究人员可以利用TorchMD快速开发和测试新的力场模型,推进计算化学和生物物理学的发展。
EchoTorch - 高效回声状态网络研究工具库
EchoTorchGithubPyTorch回声状态网络开源项目研究工具神经网络
EchoTorch是基于PyTorch的回声状态网络研究工具库,专注于实现和测试多种ESN模型。该库提供丰富的ESN组件、数据集和评估工具,支持概念器和内存管理等高级功能。EchoTorch的模块化设计便于集成到深度学习架构中,为ESN研究提供灵活性。它还包含数据转换、优化算法和可视化工具,是进行ESN相关实验和研究的理想选择。
Awesome-pytorch-list - 覆盖NLP、计算机视觉和概率生成等多个领域的各类PyTorch资源的汇集平台
GithubPyTorch开源项目机器学习深度学习神经网络自然语言处理
Awesome-Pytorch-list是一个包括各类PyTorch资源的汇集平台,覆盖NLP、计算机视觉和概率生成等多个领域。这个开源项目提供了丰富的教程、案例和工具库。其内容持续更新,致力于支持动态神经网络的GPU加速研究。研究人员和开发者可以利用这些最新资源,进行高效的机器学习和科研实验。
Ensemble-Pytorch - PyTorch集成学习框架助力模型优化
Ensemble-PyTorchGithubpytorch开源项目机器学习模型集成深度学习
Ensemble-Pytorch是一个为PyTorch设计的集成学习框架,旨在提高深度学习模型的性能和鲁棒性。该框架支持多种集成策略,如Fusion、Voting、Bagging和Gradient Boosting,适用于分类和回归任务。作为PyTorch生态系统的一部分,Ensemble-Pytorch提供简洁的API和详细文档,便于研究人员和开发者实现和优化集成模型。
TransformerLens - 深入解析生成式语言模型的机制解释工具
GithubTransformerLens开源工具开源项目机械可解释性神经网络解析语言模型
TransformerLens是一个开源库,专门用于解释生成式语言模型的内部机制。它支持加载50多种开源语言模型,让研究人员能够访问模型的内部激活。用户可以缓存激活数据,并在模型运行时进行编辑、删除或替换。这个工具为深入理解复杂语言模型的工作原理提供了有力支持。
poptorch - 将PyTorch模型部署到Graphcore IPU的开源工具
GithubGraphcore IPUPopTorchPyTorchSDK图神经网络开源项目
PopTorch是一个为Graphcore IPU开发的PyTorch扩展工具集,支持在IPU上进行模型训练、评估和使用。项目包含PopTorch和PopTorch Geometric两个主要组件,分别用于常规深度学习和图神经网络模型。项目提供了用户指南、安装说明和构建流程,主要适配Ubuntu 20.04环境。开发者可选择通过pip安装预编译wheel包或从源代码构建。PopTorch旨在让开发者充分利用IPU的计算能力,用于构建高性能AI应用。
captum - PyTorch模型可解释性和理解的开源库
CaptumGithubPyTorch开源项目模型可解释性特征归因神经网络分析
Captum是为PyTorch设计的模型可解释性库,提供集成梯度等多种算法,帮助理解模型预测依据和学习过程。它支持对抗攻击和输入扰动功能,可生成反事实解释。适用于模型开发者和可解释性研究人员,有助于改进模型性能和进行解释性研究。
cnn-explainer - 互动可视化工具,帮助用户理解卷积神经网络
CNN ExplainerGeorgia TechGithub交互式可视化卷积神经网络开源项目机器学习教育
CNN Explainer 是一个用于学习卷积神经网络的互动可视化工具,提供实时演示和本地运行功能。用户可以克隆代码库并在本地环境中运行,支持自定义模型和图像类别。该工具由乔治亚理工学院与俄勒冈州立大学合作开发。
titok-pytorch - 32 Token图像编码与重建框架
GithubPytorchTiTok图像处理图像重建开源项目深度学习
TiTok-Pytorch是一个基于PyTorch实现的图像编码和重建框架,源自ByteDance的研究。该项目将图像压缩为32个token,实现高效的图像重构和生成。TiTok-Pytorch提供简便的安装和使用方法,支持图像tokenization、重建和代码提取。这个框架适用于图像压缩、生成和重建等领域的深度学习项目,为高效图像处理提供了新的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号