Project Icon

Gemma-2-9B-It-SPPO-Iter3

通过自我游戏偏好优化增强语言模型 alignment

Gemma-2-9B-It-SPPO-Iter3以google/gemma-2-9b-it为基础,经过第三次自我游戏偏好优化迭代开发,结合openbmb/UltraFeedback数据集微调。在合成数据集中展现了出色的性能,LC.获胜率达到53.27%,在AlpacaEval排行榜上表现优良。项目主要使用英语,遵循Apache-2.0许可,适用于多种自然语言处理场景。

gemma.cpp - 轻量级C++推理引擎 实现Google Gemma模型
C++Gemma模型Githubgemma.cpp开源项目推理引擎机器学习
gemma.cpp是一个轻量级C++推理引擎,为Google Gemma基础模型提供2B和7B版本的简洁实现。项目专注于简单直接而非通用性,适合实验和研究用途。它易于嵌入其他项目并支持修改,利用Google Highway库实现可移植SIMD优化,为大语言模型研究提供灵活平台。
Xwin-LM-7B-V0.2 - 优化大语言模型对齐技术,显著提升性能
AlpacaEvalGithubHuggingfaceXwin-LM大语言模型对齐技术开源项目强化学习模型
Xwin-LM项目开发并开源大语言模型对齐技术,涵盖监督微调、奖励模型等多种方法。基于Llama2构建的版本在AlpacaEval评测中表现卓越,超过GPT-4。最新的Xwin-LM-7B-V0.2和13B-V0.2在与GPT-4的比较中分别达到59.83%和70.36%胜率。项目不断更新以提高模型的稳定性和可重复性。
Llama-3-8B-Magpie-Align-v0.3 - 优化中文查询与对齐数据的强大语言模型
GithubHuggingfaceLlama-3-8B-Magpie-Align中文指令数据集开源项目模型模型性能超反馈技术问答系统
该项目通过在Llama-3-8B上执行SFT和DPO优化,大幅提升了模型性能,尤其在中文查询响应上。使用高质量数据集进行训练,并在AlpacaEval等基准测试中表现优异,展现Magpie数据的规模和质量优势,为语言模型的普及化提供可能。
Llama-3-8b-rm-mixture - 基于Llama3-8b的奖励模型训练与优化
GithubHuggingfaceLlama3-8bOpenRLHF奖励模型开源项目数据集模型训练
Llama-3-8b奖励模型利用OpenRLHF进行训练,结合OpenLLMAI的数据集,旨在提高模型性能。该项目基于Llama-3-8b-sft-mixture模型,使用余弦调度器,学习率为9e-6,预热比例0.03,批量大小256,并执行一次学习迭代。目标是通过优化和数据集策略,提升模型的奖励决策能力,为深度学习与AI开发者提供精确的工具。
Meta-Llama-3.1-8B - Unsloth技术加速大语言模型微调并显著降低资源消耗
GithubHuggingfaceUnsloth开源项目微调性能优化模型语言模型
Meta-Llama-3.1-8B项目采用Unsloth技术优化大语言模型微调过程。该技术可将Llama 3.1、Gemma 2和Mistral等模型的微调速度提升2-5倍,同时减少70%的内存占用。项目提供多个免费Google Colab笔记本,支持Llama-3 8b、Gemma 7b和Mistral 7b等主流模型的快速微调。这些笔记本设计简单直观,初学者只需添加数据集并运行,即可获得性能显著提升的模型。
codegemma-7b-GGUF - 经过量化优化的代码生成模型,支持多种精度选择的GGUF格式
CodeGemmaGGUFGithubHuggingface开源项目性能对比文件大小模型模型量化
这个项目提供了CodeGemma-7b模型的多种量化版本,文件大小从2.16GB到9.07GB不等,采用GGUF格式。支持从Q8到IQ1的多种精度等级,可适应不同的硬件配置。其中Q6_K、Q5_K和Q4_K系列版本在性能和空间优化方面表现较好,适合生产环境使用。用户可根据自身的内存和显存情况选择合适的版本。
Meta-Llama-3.1-8B-Instruct-abliterated-GGUF - 基于Meta-Llama的无限制大语言模型优化版本
AI开源GithubHuggingfaceLLMMeta-Llama大语言模型开源项目模型模型训练
Meta-Llama-3.1-8B-Instruct优化版本采用abliteration技术对原模型进行调整,移除了默认的输出限制。项目基于transformers库开发,继承原版核心性能的同时提供更自由的输出空间。模型使用llama3.1许可证,适用于需要更灵活输出的AI开发场景。
Llama-3-8B-Magpie-Align-SFT-v0.3 - 多语种微调,新增20万中文指令数据集
GithubHuggingfaceLlama-3-8BMagpie多语言能力对齐数据开源项目模型高质量指令
本项目推出基于Meta-Llama-3-8B模型的改进版本,尤其增强了多语言支持。通过引入20万中文数据集,性能已可媲美官方Llama-3-8B-Instruct模型。该版本主要依赖自我微调,展示出高效执行能力。尽管未用到大量监督数据,模型仍在AlpacaEval与ArenaHard等基准测试中表现优异,提供了比传统高人力成本方法更高效的数据生成方案。
Qwen2-7B-Instruct-bnb-4bit - 通过Unsloth实现Mistral与Gemma的高效内存优化与快速微调
GithubGoogle ColabHuggingfaceUnsloth内存优化学习笔记本开源项目模型模型微调
Unsloth工具支持Mistral、Gemma、Llama等模型在Google Colab上实现最高5倍的微调速度,同时将内存使用减少至原来70%以下。只需上传数据集并选择“运行所有”,即可获得优化后的模型,支持导出到GGUF、vLLM,或者上传至Hugging Face。这一方案提升了复杂模型的训练效率,并为开发人员提供了便捷的实验平台。多个开源笔记本和适用广泛的Colab文件降低技术门槛,非常适合初学者使用,即便是参数量大的CodeLlama模型也能受益。
Llama-3.2-3B - 利用优化技术实现提速和内存节省的开源语言模型项目
GithubHuggingfaceLlama 3.2多语言处理大语言模型开源项目模型模型微调算力优化
这是一个基于Unsloth技术的大型语言模型优化项目。支持8种官方语言,采用改进的transformer架构和GQA技术。训练速度提升2.4倍,内存使用减少58%。提供Google Colab环境,支持对话、文本补全等场景的模型微调,适合各级用户。该项目基于Meta的原始模型,遵循社区许可协议。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号