Project Icon

SaBERT-Spanish-Sentiment-Analysis

基于BERT的西班牙语情感分析分类器

SaBERT-Spanish-Sentiment-Analysis是一个由布宜诺斯艾利斯大学学生开发的BERT模型,专注于西班牙语情感分析。使用微调的dccuchile/bert-base-spanish-wwm-uncased模型,并在11,500条西班牙语推文数据集上训练,准确率达到86.47%。用户可以使用pip安装依赖并加载模型,通过内置函数进行情感预测。项目遵循Apache 2.0开源许可证,提供详细的使用指南。

wav2vec2-base-finetuned-sentiment-classification-MESD - 基于Wav2Vec2的西班牙语音情感分析模型 准确率达93%
GithubHuggingfacewav2vec2开源项目情感分析机器学习模型西班牙语语音识别
该模型是在MESD数据集上对wav2vec2-base进行微调的西班牙语音情感分析工具。经过约890条专业录音训练,模型在语音情感识别方面达到93.08%的分类准确率。适用于情感推荐系统、智能环境控制和安全监控等领域。模型在专业录音环境下表现优异,但在嘈杂背景和识别恐惧情绪时存在一定局限性。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
bert-base-turkish-sentiment-cased - 高精度的土耳其语言情感分析BERT模型
BERTurkGithubHuggingface土耳其语开源项目情感分析数据集模型模型训练
该模型基于BERTurk,专为土耳其语言的情感分析设计,结合了电影评论、产品评论和推特数据集,实现了95.4%的准确度。适用于多种土耳其语文本情感分析场景,项目由Savas Yildirim发布于Hugging Face平台,并采用了先进的特征表示与融合技术。使用者需遵循引用要求以符合合规标准。
robust-sentiment-analysis - 使用distilBERT的情感分析模型,实现对社交媒体和客户反馈的精确分析
GithubHuggingfacedistilBERT合成数据客户反馈开源项目情感分析模型社交媒体分析
模型基于distilBERT结构并利用合成数据训练,可精确解析社交媒体、客户反馈和产品评价的情感变化。适用于品牌监测、市场研究和客户服务优化,支持五个情感分类,准确率达95%。帮助企业有效识别用户情绪动向。
BERT-Emotions-Classifier - 情感多标签分类的高效工具
BERTGithubHuggingface多标签分类开源项目情感分析情感分类数据集模型
BERT-Emotions-Classifier是一个专注于多标签情感分类的BERT模型,基于sem_eval_2018_task_1数据集训练,能够识别愤怒、恐惧、喜悦等多种情感。适用于社交媒体和客户评论中的情感分析以及基于情感的内容推荐。尽管存在情感类别和输入长度的限制,但该模型在情感分析中表现优异,需注意可能的偏差问题。
bert_turkish_sentiment - 微调TurkishBERTweet的高精度土耳其语情感分析模型
BERTGithubHuggingfaceTurkishBERTweet土耳其语开源项目情感分析模型自然语言处理
该模型基于VRLLab/TurkishBERTweet微调而来,专门用于土耳其语情感分析。在评估集上达到0.9972的高准确率,显示出强大的性能。模型采用Adam优化器,配合线性学习率调度器,经过3轮训练,每批次处理8个样本。虽然在土耳其语文本情感分析方面表现出色,但其具体应用场景和限制仍有待进一步研究。
twitter-roberta-base-sentiment - RoBERTa模型实现Twitter推文情感分析
GithubHuggingfaceTweetEvalTwitterroBERTa开源项目情感分析模型自然语言处理
这是一个基于RoBERTa-base的Twitter情感分析模型,通过5800万条推文训练和TweetEval基准微调而成。模型可将英文推文分类为负面、中性和正面三种情感。项目提供了包含文本预处理、模型加载和情感预测的使用示例。此外,还有一个基于更多最新推文训练的改进版本,可提供更精确的情感分析。该开源项目为自然语言处理研究者和开发者提供了实用的Twitter情感分析工具。
bert-base-multilingual-uncased-sentiment - BERT多语言产品评论情感预测模型
GithubHuggingfacebert-base-multilingual-uncased产品评论准确率多语言模型开源项目情感分析模型
bert-base-multilingual-uncased-sentiment是一个基于BERT的多语言情感分析模型,支持英、荷、德、法、西、意六种语言的产品评论分析。模型通过1至5星评级预测评论情感,在大规模多语言产品评论数据集上训练。测试结果显示,模型在各语言上均达到较高的准确率,特别是在'差一星'的宽松评估标准下,准确率普遍超过93%。该模型可直接应用于目标语言的产品评论情感分析,也可作为相关任务的预训练模型进行进一步微调。
bert-base-spanish-wwm-uncased - BETO:基于BERT架构的西班牙语预训练模型
BERTGithubHuggingface开源项目机器学习模型自然语言处理西班牙语预训练模型
BETO是基于BERT架构的西班牙语预训练模型,在大规模西班牙语语料库上训练。模型提供大小写敏感和不敏感两个版本,在POS标注、命名实体识别和文本分类等多项西班牙语NLP基准测试中表现优异。BETO采用31k BPE子词词表,训练2M步,可通过Hugging Face Transformers库使用。这一模型为西班牙语自然语言处理研究和应用提供了有力支持。
bert-base-spanish-wwm-cased - 基于大规模语料库训练的西班牙语BERT模型
BETOGithubHuggingface基准测试开源项目模型自然语言处理西班牙语预训练模型
BETO是一个基于大规模西班牙语语料库训练的BERT模型,采用全词遮蔽技术,提供uncased和cased两个版本。在词性标注、命名实体识别和文本分类等多项西班牙语基准测试中,BETO表现优于多语言BERT。研究者可通过Hugging Face Transformers库轻松使用该模型,为西班牙语自然语言处理研究和应用提供有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号