Project Icon

Vikhr-Llama-3.2-1B-instruct-GGUF

俄语高效指令模型,适用于低性能或移动设备

此指令模型基于Llama-3.2-1B-Instruct,使用GrandMaster-PRO-MAX俄语数据集训练,能效比基础模型提升5倍,支持低性能或移动设备部署。支持在少量计算资源下实现强大的文本生成功能。生成温度建议为0.3。在ru_arena_general中表现优异,适合精确高效的文本生成需求。由Vikhr团队的知名作者开发,致力于推动开源大型语言模型的创新。

Llama-3.2-1B-Instruct-AWQ - Meta发布的开源多语言大型语言模型
GithubHuggingfaceLlama 3.2Meta多语言大语言模型开源项目模型自然语言生成
Llama-3.2-1B-Instruct是Meta开发的多语言大型语言模型,采用改进的transformer架构,支持128k上下文长度。该模型在对话、检索和摘要任务上表现优异,支持8种语言,包括英语、德语和法语等。它提供1B和3B两种参数规模,可通过transformers库或原生llama代码库部署,适用于商业和研究用途。
Llama-3.2-3B-Instruct-GGUF - Meta Llama-3.2-3B模型的GGUF文件和高效微调工具
GithubHuggingfaceLlama 3.2开源开源项目微调机器学习模型语言模型
本项目提供Meta Llama-3.2-3B语言模型的GGUF格式文件,支持2至16位量化。集成的Unsloth工具可大幅提升Llama 3.2、Gemma 2和Mistral等模型的微调效率,速度提升2-5倍,内存减少70%。项目支持在Google Colab上使用Tesla T4 GPU免费微调模型,并可将结果导出为GGUF、vLLM格式或上传至Hugging Face平台。
saiga_mistral_7b_gguf - 模型下载安装与使用指南
GithubHuggingfaceLlama.cppru_turbo_saigatext-generation开源项目模型模型下载系统要求
该项目提供与Llama.cpp兼容的7B模型下载和指导,用户可以通过下载model-q4_K.gguf文件和使用interact_mistral_llamacpp.py脚本来运行模型。项目支持多个量化模型,最低系统要求为10GB RAM,以支持q8_0高阶量化模型进行高效运行。详细的安装和使用步骤帮助用户快速启用模型,简化文本生成任务。
Llama-3.2-1B-Instruct - Meta开发的多语言大规模语言模型 适用于对话和检索任务
GithubHuggingfaceLlama 3.2人工智能多语言大语言模型开源项目模型自然语言处理
Llama-3.2-1B-Instruct是Meta开发的新一代多语言大规模语言模型。该模型支持8种语言,包括英语、德语和法语等,有1B和3B两种参数规模。模型采用优化的Transformer架构,使用高达9T的token训练,支持128k上下文长度。它在行业基准测试中表现优异,特别擅长对话、知识检索和摘要任务。Llama-3.2-1B-Instruct适用于构建智能助手、写作辅助等多种商业和研究应用。
Llama-3.2-3B-Instruct-Q4_K_M-GGUF - Llama 3.2模型的安装与使用详解
GithubHuggingfaceLlamaMeta使用政策开源项目模型模型转换许可协议
Llama-3.2-3B-Instruct Q4_K_M-GGUF模型经过llama.cpp转换为GGUF格式,支持多语言生成,适合用于AI研究与开发。用户可以通过简单的安装步骤在Mac和Linux系统上部署该模型,并通过命令行界面或服务器进行推断。此模型具备高效的文本生成能力,是进行AI开发和优化的有效工具。
Meta-Llama-3.1-70B-Instruct-quantized.w8a8 - 经INT8量化优化的Llama-3指令模型实现内存节省和性能提升
AI助手GithubHuggingfaceMeta-Llama-3.1vLLM开源项目模型模型量化语言模型评估
Meta-Llama-3.1-70B-Instruct模型通过INT8量化优化后,GPU内存占用减少50%,计算性能提升两倍。模型保持多语言处理能力,在Arena-Hard、OpenLLM、HumanEval等基准测试中性能恢复率达98%以上。支持vLLM后端部署及OpenAI兼容API。
Llama-2-7B-GGUF - Meta开源的大型语言模型GGUF量化格式版本
GGUFGithubHuggingfaceLlama 2Meta开源开源项目模型语言模型
Llama 2 7B GGUF是Meta开源语言模型的优化版本,采用llama.cpp团队开发的GGUF量化格式。该版本提供2-8比特多种量化选项,支持CPU和GPU推理,可满足不同场景的部署需求。项目包含模型下载、运行指南以及主流框架的集成方法,方便开发者快速上手使用。
Meta-Llama-3.1-8B-Instruct - 创新技术实现大型语言模型微调的高效优化
GithubHuggingfaceLlama 3.1Unsloth内存优化开源项目性能提升模型模型微调
该项目开发了一种高效方法,大幅提升Llama 3.1、Gemma 2和Mistral等大型语言模型的微调效率。通过提供多个免费的Google Colab笔记本,项目使各类用户都能便捷地微调Llama-3 8B、Gemma 7B和Mistral 7B等模型。这些笔记本界面友好,适合各层次用户使用。采用此方法可将微调速度提升2-5倍,同时将内存使用降低最多70%,显著优化了资源利用。
DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored-GGUF - 优化和下载支持多语言的DarkIdol-Llama文本生成模型
DarkIdol-Llama-3.1-8B-Instruct-1.2-UncensoredGithubHuggingfaceLM Studiohugginface-cli开源项目模型模型下载量化
DarkIdol-Llama模型提供多种量化选项,涵盖多语言输出,适合角色扮演等多种应用场景。通过llama.cpp工具,用户可以选择符合需求的量化模型,以优化推理性能。提供详细的下载指南,帮助用户根据RAM和VRAM的配置选择合适的模型文件,特别推荐高质量的Q6_K_L版本。该模型可在LM Studio上运行,适用于不同硬件条件下的AI研究与开发。
Llama-3.1-405B-Instruct-FP8 - Meta开发的多语言大规模语言模型,支持对话和文本生成
GithubHuggingfaceLlama 3.1人工智能元模型多语言大语言模型开源项目模型
Llama-3.1-405B-Instruct-FP8是Meta公司开发的多语言大规模语言模型。该模型支持8种语言的文本输入输出,具有128K的上下文长度,采用优化的Transformer架构。模型在多语言对话和文本生成任务中表现优异,适用于助手式聊天和自然语言处理等领域。Meta为该模型提供了商业许可证,允许在遵守使用政策的前提下应用于商业和研究用途。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号