Project Icon

ISBNet

高效准确的3D点云实例分割网络实现先进场景理解

ISBNet是一种创新的3D点云实例分割网络,采用实例感知采样和框感知动态卷积技术。通过多任务学习方法和轴对齐边界框预测,ISBNet在ScanNetV2、S3DIS和STPLS3D等数据集上实现了领先的分割精度,同时保持快速推理速度。该方法有效解决了密集场景中相同语义类别物体的分割问题,为3D场景理解提供了新的解决方案。

Open3D-PointNet2-Semantic3D - 使用Open3D和PointNet++进行高效3D数据处理与语义分割
GithubOpen3DPointNet++Semantic3D开源项目机器学习语义分割
该项目演示了如何使用Open3D与PointNet++进行3D点云的加载、预处理及语义分割,提供了高效的点云操作方法和训练预测流程,为Semantic3D数据集提供了简洁优化的基准实现,适用于深度学习应用的快速开发。
DyCo3D - 动态卷积实现鲁棒3D点云实例分割
3D点云实例分割DyCo3dGithub动态卷积开源项目深度学习计算机视觉
DyCo3D提出了一种新型3D点云实例分割方法,采用动态卷积技术处理实例尺度变化问题。该方法结合大范围上下文信息和轻量级Transformer,在ScanNetV2和S3DIS数据集上取得领先结果,推理速度提升25%以上。DyCo3D简化了传统bottom-up方法的复杂流程,对超参数不敏感,为3D点云实例分割领域提供了高效且鲁棒的新方案。
ESANet - 高效RGB-D语义分割网络用于室内场景分析
ESANetGithubRGB-D实时处理室内场景分析开源项目语义分割
ESANet是一个高效的RGB-D语义分割网络,专为室内场景分析设计。该网络在NVIDIA Jetson AGX Xavier上实现实时语义分割,适用于移动机器人的实时场景分析系统。项目提供训练和评估代码,支持模型转换至ONNX和TensorRT,并可测量推理时间。ESANet在NYUv2、SUNRGB-D和Cityscapes等数据集上展现出优异性能。
PointTransformerV3 - 先进的点云处理框架
GithubPoint Transformer V3开源项目深度学习点云处理计算机视觉语义分割
PointTransformerV3是一个创新的点云处理框架,在多个基准测试中展现出卓越性能。该项目优化了模型结构,提升了运行速度和处理能力。它适用于室内外场景的语义分割,通过多数据集预训练进一步增强了效果。研究人员可利用开源代码和预训练模型轻松复现结果或应用于自身项目。
Segment-Any-Point-Cloud - 视觉基础模型驱动的通用点云序列分割框架
GithubSeal开源项目点云分割神经网络自监督学习计算机视觉
Seal是一种自监督学习框架,通过利用视觉基础模型的知识来分割多样化的点云序列。该框架在表示学习阶段强调空间和时间一致性,实现了高效的跨模态知识迁移。Seal无需依赖2D或3D标注,直接从视觉模型中提取知识,展现出优秀的可扩展性、一致性和泛化能力。它可应用于各类点云数据集,包括真实与合成、高低分辨率、大小规模以及干净和受损数据。
Mask3D - 改进3D语义实例分割方法,兼容多种数据集
3D实例分割GithubICRA 2023Mask3DPyTorchScanNet开源项目
Mask3D是一个提升3D语义实例分割的开源项目,支持ScanNet、ScanNet200、S3DIS和STPLS3D数据集。项目集成了PyTorch、PyTorch Lightning和Hydra工具,提供高效的架构和训练流程,包括数据预处理、模型训练与测试。此外,Mask3D在多个挑战中表现优异,包括在ECCV 2022的Urban3D挑战中获得第二名。
SimpleView - 高效点云形状分类的新基线方法
3D模型GithubSimpleView开源项目机器学习深度学习点云分类
SimpleView项目重新审视点云形状分类问题,提出基于多视图的简单高效方法。在ModelNet40和ScanObjectNN等标准3D点云数据集上实现最先进性能,为点云处理和机器学习研究提供新基准。项目开源代码和模型,便于复现和进一步研究。
3D-OVS - 无需标注的开放词汇3D场景分割新方法
3D分割CLIP特征GithubTensoRF开放词汇开源项目弱监督学习
3D-OVS是一种创新的弱监督3D开放词汇分割方法,仅依靠文本描述即可实现3D场景的精准分割。该技术融合TensoRF重建与CLIP特征提取,通过提示工程和DINO特征优化,提高了3D场景的语义理解能力。这一方法将3D视觉与自然语言处理有机结合,为多个领域的应用提供了新的可能性。
Mesh_Segmentation - 3D网格分割与特征提取技术发展概览
Githubmesh processing分割开源项目深度学习特征提取计算机图形学
本项目整理了3D网格分割和特征提取领域的重要研究进展,涵盖2019年至2024年间的创新技术,如变形自动编码器、窗口变换器和图卷积网络等。同时收录了相关数据集、课程资源和关键论文,为该领域研究人员提供全面参考,促进3D网格处理技术的发展。
3D-PointCloud - 点云技术研究进展与应用综述
3D视觉Github开源项目点云目标检测自动驾驶语义分割
该项目汇总了3D点云处理相关的研究论文和数据集。内容涵盖目标检测、语义分割、点云配准和完成等多个任务。同时收录了自动驾驶、3D视觉变换器等领域的综述文献。这一资源有助于研究人员和工程师了解点云技术的最新进展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号