Project Icon

tfcausalimpact

TensorFlow实现的因果影响分析库

tfcausalimpact是一个基于TensorFlow实现的因果影响分析库。该工具利用贝叶斯结构模型分析干预前后的数据,评估干预效果。支持Python 3.7-3.11,提供统计结果输出和可视化功能。通过变分推断和HMC两种拟合方法,在分析精度和计算性能间实现平衡。适用于研究人员和数据科学家进行因果推断分析,操作简便,功能强大。

awesome-tensorflow - TensorFlow资源大全 丰富的开源深度学习工具库
GithubTensorFlow人工智能开源项目机器学习深度学习神经网络
这是一个全面的TensorFlow资源列表,涵盖教程、模型、项目、工具等多个方面。开发者和研究人员可以在此找到丰富的学习和应用资源,从入门到进阶。列表内容包括实验、库、视频、论文等,适合不同层次的TensorFlow使用者。这个资源集为探索TensorFlow的各种可能性提供了便利。
neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
Tensorflow-Project-Template - 结合了简单性、文件夹结构的最佳实践和良好的 OOP 设计的简介深度学习项目模板
GithubOOP设计Tensorflow开源项目模板深度学习项目结构
一个设计简洁的深度学习项目模板,结合了简单性、良好的文件夹结构和优秀的OOP设计,帮助开发者更快地启动主要项目,专注于核心部分(如模型和训练)。模板封装了常见功能,使得开发者仅需更改核心内容即可轻松启动新的TensorFlow项目。主要组件包括模型、训练器、数据加载器和日志记录器,提供详细的使用示例和项目架构图。
llm-transparency-tool - 深入分析Transformer语言模型的交互式可视化工具
GithubLLM Transparency Tool可视化分析开源项目神经网络语言模型贡献图
LLM Transparency Tool是一个用于分析Transformer语言模型的交互式工具。该工具支持选择模型和提示、运行推理,并通过贡献图可视化模型内部机制。它能够展示token表示、注意力头和前馈网络块的详细信息,有助于理解模型的决策过程。这个工具兼容多种模型,并提供Docker部署选项,是研究人员和开发者分析语言模型的实用资源。
pytorch-ts - 概率时间序列预测开源框架
GithubPyTorchPyTorchTS开源项目时间序列预测概率模型深度学习
PyTorchTS是一个基于PyTorch的开源时间序列预测框架,利用GluonTS作为后端API。它提供先进的概率模型,支持数据处理和回测。该框架适用于单变量和多变量时间序列预测,安装简便,易于使用。PyTorchTS为数据科学家和研究人员提供了高效的时间序列分析工具。
ktrain - 轻量级的深度学习和AI工具包
GithubTensorFlow Kerasktrain开源项目机器学习深度学习预训练模型
ktrain 是一个基于 TensorFlow Keras 的轻量级深度学习库封装,帮助用户快速构建、训练和部署各种机器学习模型。适用于文本、视觉、图表和表格数据,支持文本分类、图像识别、节点分类和因果推断等任务。无论是初学者还是有经验的研究人员,都能借助其简单的 API 和多种学习率策略,快速实现高效模型部署,支持导出到 ONNX 和 TensorFlow Lite。
variational-autoencoder - 变分自编码器参考实现,兼容TensorFlow和PyTorch
GithubMNISTPyTorchVariational Autoencoderjaxtensorflow开源项目
该项目提供了变分自编码器的参考实现,支持TensorFlow和PyTorch。项目中包含了逆自回归流变分家族的示例,通过变分推断对二值MNIST手写数字图像进行拟合。通过重要性采样估计边际似然,展示了高效的训练和验证结果。优化后的测试集边际对数似然达到了-95.33 nats。此外,该项目还提供了JAX实现,能够实现3倍于PyTorch的加速效果。
TensorFlow-Examples - 探索TensorFlow的最佳实践与全面教程
GithubTensorFlow开源项目数据管理机器学习深度学习神经网络
TensorFlow-Examples提供针对TensorFlow 1和2的详尽教程,涵盖从基础操作到高级模型如深度神经网络,适合初学者通过详细的笔记本和代码解析深入学习,同时介绍最新的API使用实践,如layers、estimator和dataset。
TensorFlow-Tutorials - TensorFlow 2 深度学习教程
GithubKerasPythonTensorFlow开源项目教程深度学习
这些教程为深度学习和TensorFlow 2 的新手提供全面指导,涵盖简单线性模型、自然语言处理和图像生成等主题。每个教程附有详细代码示例和相应的YouTube视频讲解,帮助学习者快速掌握。适合希望深入了解TensorFlow及其应用的开发者和研究人员。
tiny-Qwen2ForCausalLM - 为TRL库提供单元测试的轻量级因果语言模型
GithubHuggingfaceQwen2ForCausalLMTRL单元测试变换器开源项目模型
Tiny-Qwen2ForCausalLM是为TRL库单元测试设计的轻量级因果语言模型。作为Transformers库的组成部分,这个模型体积小巧但功能完备,能够有效验证TRL库的各项功能。它为开发人员提供了一个高效的测试工具,有助于确保TRL库的稳定性和可靠性。研究人员和工程师可以利用这个模型快速进行TRL相关的开发和测试工作。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号