Project Icon

brevitas

面向神经网络量化的PyTorch库

Brevitas是一个开源的神经网络量化PyTorch库,支持PTQ和QAT。它为常见PyTorch层提供量化版本,如QuantConv和QuantLSTM等,允许精细调整量化参数。兼容Python 3.8+和PyTorch 1.9.1-2.1,跨平台支持,推荐GPU加速。作为研究项目,Brevitas在深度学习模型压缩和效率优化方面具有重要应用价值。

AQLM - 加性量化技术实现大型语言模型高效压缩
AQLMGithubPyTorch大语言模型开源项目推理量化
AQLM项目开发了一种名为加性量化的新技术,可将大型语言模型压缩至原规模的1/16左右,同时基本保持原始性能。该技术适用于LLaMA、Mistral和Mixtral等多种模型架构,并提供了预量化模型。项目包含PyTorch实现代码、使用教程和推理优化方案,为大规模语言模型的实际应用提供了新思路。
molmo-7B-D-bnb-4bit - 量化技术优化,模型尺寸有效缩减
GithubHuggingfacetransformers基准测试开源项目机器学习模型模型深度学习量化
采用4bit量化技术的Molmo-7B-D模型,从30GB压缩至7GB,运行需求缩减至约12GB VRAM。项目致力于在保持低资源消耗的基础上提升模型性能。进一步的信息及示例代码可在GitHub和Hugging Face上获取,性能指标及基准测试结果预定于下周发布。
quantized-models - 提供多源量化模型以提升大语言模型推理效率
GithubHuggingfacequantized-modelstransformers大型语言模型开源项目文本生成推理模型量化模型
quantized-models项目整合了多种来源的量化模型,旨在提高大语言模型的推理效率。模型支持者包括TheBloke、LoneStriker、Meta Llama等,提供gguf、exl2格式的支持。用户可通过transformers库便捷地进行文本生成,这些模型按现状发布,需遵循其各自的许可协议。
Awesome-Deep-Neural-Network-Compression - 深度神经网络压缩技术资源库
GithubNAS剪枝开源项目模型优化深度神经网络压缩知识蒸馏量化
该项目汇集了深度神经网络压缩的综合资源,包括量化、剪枝和蒸馏等技术的论文、总结和代码。涵盖高效模型设计、神经架构搜索等相关主题,并提供按会议和年份分类的论文列表。项目还收录了主流压缩系统和工具链接,为深度学习模型压缩研究提供了全面的参考资料。
Midnight-Miqu-70B-v1.5-4bit - 为大规模语言模型提供高效4位量化部署方案
AI模型压缩AWQGithubHuggingfaceMidnight-Miqu-70Blmdeploy开源项目模型量化模型
Midnight-Miqu-70B-v1.5-4bit是一个经过lmdeploy工具优化的4位量化模型,旨在实现大规模语言模型的高效部署。该项目通过自动量化技术显著减小模型体积,同时保持性能稳定。这为在资源受限环境中部署强大语言模型提供了实用解决方案,可应用于多种自然语言处理任务。
AutoGPTQ - 基于GPTQ算法的LLM量化与推理优化工具包
AutoGPTQGPTQ算法Github安装指南开源项目推理速度量化模型
AutoGPTQ是基于GPTQ算法的LLM量化工具包,支持多种模型类型和硬件平台的推理优化,整合Marlin与Exllama内核,提升推理速度与性能,适合在资源受限环境中部署高效的语言模型。
Efficient-Deep-Learning - 深度神经网络压缩和加速方法综述
Github开源项目权重量化模型加速知识蒸馏神经网络压缩网络剪枝
此项目汇总了深度神经网络压缩和加速的多种方法,涵盖神经架构设计、剪枝、量化、矩阵分解和知识蒸馏等技术。重点介绍了剪枝(含彩票假设)、知识蒸馏和量化等领域的研究进展,并提供了大量相关论文摘要。项目还收录了初始化剪枝和高效视觉Transformer等相关资源,为该领域的研究和开发提供了全面参考。
bge-large-en-v1.5-quant - 量化ONNX模型增强句子编码效率和性能
DeepSparseGithubHuggingfaceSparsify嵌入开源项目推理模型量化
该量化ONNX模型旨在利用DeepSparse加速bge-large-en-v1.5嵌入模型,提升句子编码效率。通过Sparsify实现的INT8量化和深度稀疏技术,在标准笔记本和AWS实例上分别实现了4.8倍和3.5倍的延迟性能改善。在多个数据集的测试中,该模型在分类和STS任务中展现出较高的编码效率。结合DeepSparse和ONNX技术栈,该模型适用于需要高效自然语言处理的应用场景。
zoo - 轻量级二值化神经网络模型库
GithubLarq ZooPythonTensorFlow开源项目深度学习神经网络
Larq Zoo是一个专注于二值化神经网络(BNN)的开源模型库,提供多种预训练BNN模型。作为Larq生态系统的一部分,它与Larq和Larq Compute Engine协同工作,支持BNN的构建、训练和部署。该项目适用于Python 3.8-3.10和TensorFlow 2.4-2.12版本,通过pip可轻松安装。Larq Zoo由Plumerai公司开发,旨在推进BNN研究和应用,特别适合在移动和边缘设备上部署AI。
Qwen2.5-32B-AGI-GGUF - Qwen2.5-32B-AGI模型量化与性能优化概述
GithubHuggingfaceQwen2.5-32B-AGI开源项目文本生成权重模型模型优化量化
介绍Qwen2.5-32B-AGI在Llamacpp中的量化模型,强调文本生成性能的提升。多种量化格式(如Q8_0,Q6_K_L)满足不同需求,结合embed/output量化,适应低RAM环境。提供模型选择、下载与运行指南,含基于ARM芯片的性能优化方法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号