Project Icon

RUL

Transformer和AttMoE网络在锂电池剩余寿命预测中的应用

本项目探索了Transformer和AttMoE网络在锂电池剩余寿命预测领域的应用。研究基于NASA和CALCE数据集进行实验,展示了详细的实验结果和模型架构。项目分析了dropout和noise_level参数对模型性能的影响,并提出了优化建议。代码采用PyTorch实现,并提供了相关学术文献引用。此外,项目还整理了多个锂电池寿命预测研究的相关资源,为该领域的研究人员提供了comprehensive参考。项目内容包括模型图示、实验结果可视化以及代码包依赖说明。研究者可以通过提供的邮箱地址与作者进行进一步交流。项目持续更新,最新增加了AttMoE相关内容和预测图表。

Stock-Prediction-Models - 开源股票预测与交易模型集合
GithubStock-Prediction-Models交易代理开源项目机器学习深度学习股票预测
一个涵盖多种机器学习和深度学习模型的开源库,专用于股票预测和交易仿真。包括LSTM、GRU、CNN等模型,以及Q学习、进化策略等强化学习代理。此外,还提供特斯拉股票研究、异常值分析、蒙特卡洛仿真等数据探索功能,适用于实时预测和历史数据分析。
C-Tran - Transformer在多标签图像分类中的应用
GithubTransformers图像分类多标签分类开源项目深度学习计算机视觉
C-Tran是一个探索Transformer在多标签图像分类中应用的开源项目。该项目提出了一种通用多标签图像分类方法,在COCO80和VOC20等数据集上展现出优秀性能。项目包含完整的训练和运行指南,涵盖数据处理和模型训练等关键步骤。C-Tran为计算机视觉领域提供了新的研究方向,对推进多标签图像分类技术具有重要意义。
subnet9_track2_1 - Transformer模型使用指南及相关风险和技术限制
GithubHuggingfacetransformers开源项目技术规格模型模型细节环境影响用途
本页面概述Transformer模型的使用说明,包含潜在风险和技术限制,指导用户在直接或下游应用中采用最佳实践,规避偏见和误用。
hardware-aware-transformers - 瞄准多硬件平台优化的自然语言处理Transformer模型
GithubHATNLPPyTorchTransformer开源项目硬件感知
HAT项目提供基于PyTorch的硬件感知Transformer,模型大小减小至原来的3.7倍,且性能无损。通过SuperTransformer搜索优化的SubTransformer,大幅降低搜索成本,并在不同硬件平台例如Raspberry Pi和Intel Xeon上实现显著加速。支持多种机器翻译任务,并提供预处理数据和预训练模型的直接下载。
LongMem - 为语言模型赋予长期记忆能力
GithubLongMem开源项目评估语言模型长期记忆预训练
LongMem项目通过创新的长期记忆机制提升了语言模型的性能。该项目实现了记忆库、检索机制和联合注意力等核心技术,使模型在内容学习任务中表现优异。项目开源了完整代码,包括环境配置、模型结构和评估方法,为研究者提供了便利的复现和探索工具。LongMem为自然语言处理领域开辟了新的研究方向。
transformer-explainer - 帮助理解Transformer模型与GPT-2预测的实时交互式工具
GPT-2Georgia Institute of TechnologyGithubMIT许可Transformer Explainer交互式可视化工具开源项目
Transformer Explainer 是一款互动可视化工具,帮助理解基于Transformer的模型如GPT的工作原理。该工具在浏览器中运行实时的GPT-2模型,允许实验自己的文本并实时观察Transformer内部组件的协同预测过程。适合技术人员与学习者深入探索Transformer模型机制与应用。
xlstm - 提升语言建模性能的创新循环神经网络架构
GithubPyTorchmLSTMsLSTMxLSTM开源项目语言模型
xLSTM是一种创新的循环神经网络架构,通过指数门控和新型矩阵内存技术,克服了传统LSTM的局限性,显著提升语言建模性能。与Transformer和状态空间模型相比表现出色。该模型基于PyTorch开发,适用于CUDA环境,提供详细的安装指南和使用示例,便于集成到现有项目中。
UnsupervisedScalableRepresentationLearningTimeSeries - 多变量时间序列的无监督可扩展表示学习方法
GithubPyTorchUCR数据集UEA数据集开源项目无监督学习时间序列表示学习
UnsupervisedScalableRepresentationLearningTimeSeries项目提出了一种无监督可扩展表示学习方法,专门用于处理多变量时间序列数据。该方法基于三元组损失训练编码器,能够处理等长或不等长时间序列。项目提供了UCR和UEA数据集实验代码,包括迁移学习和稀疏标记实验。此外,还包含预训练模型和结果可视化工具。在多个基准数据集上,该方法展现出优秀的性能,为时间序列分析领域提供了创新解决方案。
transformers-code - 对Transformers从入门到高效微调的全方位实战指南
GithubNLPTransformers分布式训练开源项目微调模型训练
课程提供丰富的实战代码和案例,从基础入门到高效微调以及低精度和分布式训练。涵盖命名实体识别、机器阅读理解和生成式对话机器人等NLP任务。帮助深入理解Transformers的核心组件和参数微调技术,包括模型优化和分布式训练。适合对Transformers应用和实践感兴趣的学习者。课程在B站和YouTube持续更新,紧跟技术前沿。
awesome-decision-transformer - 基于序列模型的离线强化学习新方法
Decision TransformerGithubTransformer序列建模开源项目强化学习离线学习
Decision Transformer (DT)是一种将离线强化学习转化为条件序列建模的创新方法。本项目收集了DT相关研究论文,涵盖多智能体系统、安全强化学习、多任务学习等应用领域。通过持续追踪DT的前沿进展,为研究人员提供全面的资源,促进这一算法在各个领域的发展和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号