Project Icon

C2PNet

物理感知单图像去雾的课程对比正则化方法

C2PNet是一种基于课程对比正则化的单图像去雾方法。该方法结合物理原理和深度学习技术,在SOTS室内和室外数据集上实现了领先性能。C2PNet的核心架构融合了课程学习和对比正则化策略,旨在提升去雾质量和模型泛化能力。项目开源了完整的训练和评估代码,便于研究者在不同数据集上进行实验和改进。

image-restoration-sde - 创新图像恢复方法 结合SDE和扩散模型的IR-SDE与Refusion
GithubIR-SDERefusionSDE图像恢复开源项目深度学习
该项目提出IR-SDE和Refusion两种图像恢复方法。IR-SDE采用均值回复随机微分方程,在多项任务中达到最优性能。Refusion整合潜空间扩散模型,可处理大尺寸真实图像。这些技术适用于合成和实际数据集,有效解决图像去雨、去雾、去阴影等问题。项目开源完整PyTorch实现代码,并提供预训练模型和使用指南。
Awesome-CVPR2024-CVPR2021-CVPR2020-Low-Level-Vision - CVPR 2020-2024年底层视觉论文代码汇总
CVPRGithub代码集图像处理底层视觉开源项目论文集
该项目整理了CVPR 2020至2024年底层视觉领域的重要论文和代码,包括超分辨率、图像去雨、去雾、去模糊、去噪等任务。项目为研究人员提供全面资源,促进底层视觉技术发展。此外,还收录了其他相关会议和研究组信息,是计算机视觉研究的重要参考。项目收录了数百篇论文及其相应的代码实现链接,为研究者提供了丰富的学习和实践资源。
Awesome-ECCV2024-ECCV2020-Low-Level-Vision - ECCV底层视觉研究论文与代码汇总
ECCVGithub图像处理底层视觉开源项目计算机视觉论文收集
本资源库汇集了ECCV2024和2020年底层视觉领域的论文及代码。涵盖超分辨率、图像去雨、去雾、去模糊、去噪、恢复和增强等多个研究方向。项目提供了便捷的平台,使研究人员和开发者能够快速获取最新成果。此外,仓库还链接了CVPR、ICCV等相关会议论文集,以及底层视觉和AIGC研究组的整理资料。
night-enhancement - 将层分解与光效抑制结合的无监督夜间图像增强方法
ECCVGithub图像处理夜间图像增强开源项目无监督学习计算机视觉
这个项目提出了一种新型无监督夜间图像增强方法,结合层分解和光效抑制技术来提升夜间图像质量。该方法能有效去除不必要的光效,同时提高图像整体可见度。在多个低光照数据集上,这种方法展现出优异性能,为夜间图像处理领域开辟了新思路。项目公开了源代码、预训练模型和数据集,便于研究人员进行深入研究和应用。
U-2-Net - 深度嵌套U结构助力显著对象精准检测
GithubU2-Net人像分割图像背景移除开源项目模型训练视觉应用
U-2-Net,一项荣获2020年模式识别最佳论文奖的创新技术,通过其深度嵌套U结构显著提升对象检测精准度。此技术广泛适用于图像处理、视频分析、背景移除及人像生成等领域,并提供丰富的开发资源助力应用的快速迭代。
Awesome-CVPR2024-Low-Level-Vision - CVPR2024低层视觉任务论文与代码汇总
CVPR2024Github低层视觉图像处理开源项目深度学习计算机视觉
这个项目汇总了CVPR2024会议中与低层视觉任务相关的论文和代码,内容涵盖图像复原、超分辨率、去噪和去模糊等多个研究方向。项目提供了这些领域最新研究成果的概览,包括创新方法及其开源实现。通过持续更新,该资源库为计算机视觉领域的研究人员和开发者提供了及时、全面的学术参考。
Blind-Motion-Deblurring-Survey - 深度学习运动去模糊技术研究综述及发展趋势
Github人工智能图像处理开源项目深度学习计算机视觉运动去模糊
本项目全面回顾了深度学习在运动去模糊领域的研究进展。通过系统分析150余篇相关论文,总结了30多种盲运动去模糊算法。对当前先进方法在4个数据集上进行了对比实验,揭示了现有技术的不足,并探讨了未来发展方向。项目还收录了CVPR 2024最新去模糊研究成果,为该领域研究人员提供了重要参考。
d2-net - 深度学习驱动的联合特征检测与描述
CNND2-NetGithub开源项目深度学习特征提取计算机视觉
D2-Net是一个用于联合检测和描述局部图像特征的卷积神经网络模型。该项目提供模型实现、预训练权重、特征提取脚本和MegaDepth数据集训练流程。D2-Net在图像匹配和3D重建等计算机视觉任务中表现优异,提高了特征提取的准确性和效率。项目支持多尺度特征提取,并包含在不同数据集上训练的模型权重。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
Restormer - 高效Restormer Transformer实现高分辨率图像修复
GithubRestormerTransformer图像去噪图像去雨开源项目高分辨率图像恢复
研究提出了一种名为Restormer的高效Transformer模型,通过多头注意力和前馈网络设计,实现了长距离像素交互,适用于大图像处理。该模型在图像去雨、单图像运动去模糊、散焦去模糊(单图像和双像素数据)和高斯及真实图像去噪等任务中表现优异。Restormer的训练代码和预训练模型已发布,并被选为CVPR 2022的口头报告。用户可通过Colab或命令行测试预训练模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号