Project Icon

self-paced-ensemble

自适应集成学习框架解决高度不平衡数据分类

Self-paced Ensemble (SPE)是一个处理大规模高度不平衡数据分类的集成学习框架。SPE采用严格平衡的欠采样策略,无需计算样本间距离,适用于各类数据集。该框架计算高效,性能优异,可与多种学习模型兼容。作为通用框架,SPE能提升现有方法在不平衡数据上的表现,特别适合处理噪声大、极度不平衡的大规模数据集。

setfit - SetFit高效小样本学习框架,支持多语言文本分类
GithubHugging Face HubSetFit多语言支持少量标签数据开源项目无需提示
SetFit是一种高效且无需提示的小样本微调框架,利用Sentence Transformers实现高准确度的小样本学习。不需要手工制作提示或语言模型转换器,直接从文本示例生成丰富嵌入,大大提高训练速度。在仅有少量标记数据的情况下,SetFit的精度可与大型模型相媲美。例如,针对客户评论情感数据集,仅使用每类8个标记样本就能达到RoBERTa Large的全量训练精度。支持多语言文本分类,兼容Hugging Face Hub,训练和推理过程简单直观,是一个高效实用的选择。
LightGBM - 高效梯度提升框架 支持大规模数据并行学习
GithubLightGBM决策树开源项目数据分析机器学习梯度提升
LightGBM是一个高效的梯度提升框架,采用树形学习算法。它具有训练速度快、内存消耗低、准确性高的特点,支持并行、分布式和GPU学习,可处理大规模数据。这个开源项目在机器学习竞赛中应用广泛,在公开数据集上的表现优于多个现有框架。LightGBM为用户提供了详细文档和丰富示例,适用于多种机器学习任务。
awesome-semi-supervised-learning - 半监督学习资源汇总,减少标注成本,提升分类效果
GithubSemi-Supervised Learning分类半监督学习方法开源项目深度学习生成模型
全面整理的半监督学习资源列表,包括最新研究、代码库和各种应用。半监督学习通过结合大量无标签数据和少量有标签数据,减少标注成本并提升模型准确度。资源涵盖计算机视觉、自然语言处理、生成模型、图基方法等多个领域,适用于深度学习框架。提供详细的文献综述、代码实现以及相关书籍和讲座链接,帮助用户了解和应用半监督学习技术。
handson-unsupervised-learning - Python实现无监督学习的实用指南
GithubPythonTensorFlowscikit-learn开源项目无监督学习机器学习
该项目为Python无监督学习提供实践指南,介绍scikit-learn和TensorFlow框架处理未标记数据的方法。涵盖聚类、降维、生成模型等算法,并提供代码示例。项目包含Windows、macOS环境配置说明,支持GPU加速。内容涉及模式发现、异常检测、自动特征工程等应用,适合机器学习从业者参考学习。
xgboost - 高效灵活可扩展的梯度提升算法库
GithubXGBoost分布式计算开源项目数据科学机器学习梯度提升
XGBoost是一款高性能的梯度提升算法库,专为效率、灵活性和可扩展性而设计。它能快速准确地处理大规模数据集,解决各类机器学习问题。XGBoost支持多种分布式环境,可处理超十亿样本的数据。作为开源项目,XGBoost不断通过社区贡献来提升性能和扩展功能。
LibFewShot - 优化少样本学习研究的开源项目
GithubLibFewShotMeta学习方法少样本学习度量学习方法开源项目非情景方法
LibFewShot是一款面向少样本学习研究的开源项目,支持多种经典和元学习方法。项目提供快速安装指南和详细教程,支持的数据集包括Caltech-UCSD Birds、Stanford Cars等,并提供下载多种预训练模型和配置文件。LibFewShot还鼓励代码贡献,遵循PEP 8编码风格。项目采用MIT许可证,仅限学术研究使用。
pattern_classification - 机器学习和模式分类资源集合
Github开源项目数据预处理机器学习模型评估模式分类聚类分析
该项目汇集了机器学习和模式分类领域的全面资源。内容包括教程、示例代码、数据集、工具和技术说明等。涵盖数据预处理、特征选择、多种算法实现等方面。还提供数据可视化案例、统计模式分类研究、相关书籍和讲座资料。适合学习和应用机器学习技术的研究者和从业者参考使用。
mleap - 快速部署机器学习流水线与算法的实用工具包
GithubMLeapScikit-learnSpark开源项目性能机器学习数据管道
MLeap提供高性能、便携、易于集成的生产库,支持将Spark和Scikit-learn的机器学习流水线导出为便携格式并执行。通过其执行引擎和序列化格式,数据科学家和工程师可以无需依赖Spark或Scikit-learn环境,将数据流水线和算法轻松部署到生产环境中。MLeap支持多种序列化格式(如JSON、Protobuf),并与现有技术高度集成,提供用户灵活定制数据类型和转换器的能力。
speech-emotion-recognition - 开源多模型语音情感识别系统
Emo-db数据集Github开源项目机器学习模型深度学习模型特征提取语音情感识别
speech-emotion-recognition是一个开源的语音情感识别系统,基于Emo-db数据集开发。该项目支持SVM、随机森林、神经网络、CNN和LSTM等多种机器学习和深度学习模型。系统使用Python实现,提供完整的数据预处理、特征提取和模型训练工作流程。项目设计简单易用,适合研究人员和开发者进行语音情感分析的研究和应用开发。该系统可应用于客户服务、情感计算、人机交互等领域,具有模型多样化、使用灵活、易于扩展等优点。
PFLlib - 个性化联邦学习算法库和评估平台
GithubPFLlib个性化开源项目数据集算法库联邦学习
提供36种传统和个性化联邦学习算法,涵盖3种场景和20个数据集。专注于统计异质性数据,支持高效GPU内存使用及新增的隐私保护功能。新手用户通过简单的示范指南即可快速上手,参与贡献算法、数据集和评估指标。支持非独立同分布和不均衡数据,并可在多达500个客户端上进行训练模拟。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号