Project Icon

indictrans2-indic-en-1B

IndicTrans2提供22种印度本地语言到英语的翻译支持

IndicTrans2是一个开源多语言机器翻译模型,支持22种印度本地语言到英语的翻译。该模型基于FLORES-200和IN22-Gen等数据集进行训练,并使用BLEU和CHRF等指标进行评估。详细的使用指引可通过GitHub获取,翻译任务需引入IndicProcessor。模型在Python环境下,支持CUDA的加速。

项目介绍:IndicTrans2 Indic-En 1B

项目背景

IndicTrans2 Indic-En 1B 是一个旨在加强印地语和英语之间翻译的机器学习模型。它是由 AI4Bharat 团队开发的,专注于印度的 22 种语言,包括阿萨姆语、孟加拉语、布罗语、印地语、卡纳达语、马拉雅拉姆语、马拉地语、尼泊尔语、奥里亚语、旁遮普语、泰米尔语和泰卢固语等等。这些语言使用了多种文字系统,如天城文、孟加拉文、古吉拉特文、打鲁古文等等。

项目动机

IndicTrans2 项目的目标是实现高质量且容易获取的翻译服务,特别针对印度的多语言环境,以促进语言间的沟通和信息分享。模型使用大规模的数据集,如 flores-200 和 IN22-Gen,利用先进的机器学习技术和优化的翻译算法,提供精准的翻译结果。

技术指标

IndicTrans2 使用的评估指标包括 BLEU、CHRF、CHRF++、和 COMET,这些指标可以帮助评估翻译模型的准确性和可理解性。通过这些指标,研究人员能够不断优化模型性能,使其更符合实际使用场景需求。

使用说明

使用 IndicTrans2 模型进行推理和翻译十分简单。需要通过 transformers 库加载预训练模型和分词器,并使用 IndicProcessor 进行预处理、翻译和后处理。以下是一段示例代码:

import torch
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
)
from IndicTransToolkit import IndicProcessor

model_name = "ai4bharat/indictrans2-indic-en-1B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)

ip = IndicProcessor(inference=True)

input_sentences = [
    "जब मैं छोटा था, मैं हर रोज़ पार्क जाता था।",
    "हमने पिछले सप्ताह एक नई फिल्म देखी जो कि बहुत प्रेरणादायक थी।",
]

src_lang, tgt_lang = "hin_Deva", "eng_Latn"

batch = ip.preprocess_batch(
    input_sentences,
    src_lang=src_lang,
    tgt_lang=tgt_lang,
)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

inputs = tokenizer(
    batch,
    truncation=True,
    padding="longest",
    return_tensors="pt",
    return_attention_mask=True,
).to(DEVICE)

with torch.no_grad():
    generated_tokens = model.generate(
        **inputs,
        use_cache=True,
        min_length=0,
        max_length=256,
        num_beams=5,
        num_return_sequences=1,
    )

with tokenizer.as_target_tokenizer():
    generated_tokens = tokenizer.batch_decode(
        generated_tokens.detach().cpu().tolist(),
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )

translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)

for input_sentence, translation in zip(input_sentences, translations):
    print(f"{src_lang}: {input_sentence}")
    print(f"{tgt_lang}: {translation}")

参考文献

如果您打算使用此项目,请引用如下文献:

@article{gala2023indictrans,
title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
author={Jay Gala et al.},
journal={Transactions on Machine Learning Research},
year={2023},
url={https://openreview.net/forum?id=vfT4YuzAYA},
}

IndicTrans2 努力在语言和文化的鸿沟间架起桥梁,为多语言社会提供方便、可靠的翻译工具。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号