Project Icon

cloudy-large-zh

支持多任务评估的高级句子相似性和特征提取模型

cloudy-large-zh项目专注于句子相似性和特征提取,利用MTEB数据集进行广泛的任务评估。在中医问答、电子商务和视频检索等领域表现优异,特别是在MTEB CMedQAv2重新排序任务中获得89.47的MRR分数。采用先进算法提高检索性能,确保各领域内容的准确排序和高效检索。

ag-nli-DeTS-sentence-similarity-v4 - 句子相似度的跨编码器评估与文本分类应用
Cross-EncoderGithubHuggingfaceNLI数据集SentenceTransformers句子相似性开源项目模型语义匹配
本模型采用Cross-Encoder方法,对多语言句子相似度进行评估,使用六种NLI数据集训练。通过提供0到1间的相似度分数,协助实现精确的文本分类和语义分析。基于SentenceTransformers框架,提升文本特征提取性能,适用于包括英语、荷兰语、德语、法语、意大利语和西班牙语在内的多种语言。
bge-en-icl - 先进的多语言自然语言处理模型
GithubHuggingfacesentence-transformers分类句子相似度开源项目检索模型特征提取
bge-en-icl是一个开源的句子嵌入模型,在MTEB基准测试的多项自然语言处理任务中表现出色。该模型支持多语言处理,适用于句子相似度计算、文本分类和信息检索等应用场景。在AmazonPolarity分类任务中,bge-en-icl达到了96.98%的准确率;在FEVER检索任务中,准确率达到92.83%。此外,该模型在其他任务如ArguAna检索和Banking77分类中也取得了优异成绩。bge-en-icl为研究人员和开发者提供了一个强大的工具,用于处理和分析各种文本数据。
stsb-roberta-large - RoBERTa大型模型用于评估句子语义相似度
Cross-EncoderGithubHuggingfaceSentenceTransformers开源项目文本对比模型自然语言处理语义相似度
stsb-roberta-large是一个基于SentenceTransformers框架的Cross-Encoder模型,专门用于评估句子对的语义相似度。该模型在STS基准数据集上训练,可为两个句子之间的语义相似性预测0到1之间的分数。它可以轻松集成到多种自然语言处理任务中,为文本相似度分析提供解决方案。
bge-base-en-v1.5 - 增强文本处理能力的多任务学习模型
GithubHuggingfacesentence-transformers分类句子相似性句子聚类开源项目模型特征提取
bge-base-en-v1.5模型通过多任务学习优化自然语言处理技术,覆盖分类、检索、聚类和重排任务。在多个MTEB数据集上表现优异,例如在亚马逊情感分类任务中达到93.39%的准确率,在AskUbuntu重排任务中MRR达到74.28%。该模型具有MIT开源许可,适用于多种英语任务,为研究人员和开发者提供有效支持。
multi-qa-mpnet-base-cos-v1 - 面向语义搜索的句子向量化模型
GithubHuggingfacesentence-transformers开源项目文本嵌入机器学习模型自然语言处理语义搜索
multi-qa-mpnet-base-cos-v1是一个基于sentence-transformers的语义搜索模型。该模型将句子和段落映射为768维向量,通过215M个多样化问答对训练而成。它支持句子相似度计算和特征提取,适用于信息检索和问答系统等应用。模型提供简洁API,可使用点积或余弦相似度计算文本相似度。
all_datasets_v3_mpnet-base - 基于MPNet的高效句子和段落编码模型
GithubHuggingfacesentence-transformers信息检索句向量句子相似性对比学习开源项目模型
该模型利用sentence-transformers,通过microsoft/mpnet-base预训练模型和自监督对比学习目标进行微调,将句子和段落有效编码至768维度向量空间,适用于信息检索、语义搜索和聚类任务,尤其是在句子相似度计算中有较好表现。微调时,使用了超过10亿对的句子数据,并在TPU v3-8环境下进行了920k步训练,采用AdamW优化器和对比损失。此外,在无sentence-transformers库的情况下,通过特定的池化操作仍可实现相似的编码效果,代码实现简单易用。
MiniLM-L6-Keyword-Extraction - 高效句子嵌入模型,用于语义搜索与信息聚类
GithubHuggingFaceHuggingfacesentence-transformers句子相似性对比学习开源项目模型语义搜索
此项目通过自监督对比学习,训练出可将句子和段落转化为384维向量的模型,适用于语义搜索、信息检索和句子相似度任务。模型基于1B句子对数据集微调,利用TPU v3-8进行训练,并在Hugging Face社区活动期间开发。用户可使用sentence-transformers或HuggingFace Transformers实现多种自然语言处理应用。
e5-small-v2 - 轻量级多语言嵌入模型用于语义搜索和自然语言处理
GithubHuggingfaceMTEBsentence-transformers开源项目文本相似度模型模型评估自然语言处理
e5-small-v2是一款轻量级多语言嵌入模型,适用于语义搜索和自然语言处理任务。该模型在MTEB基准测试中表现优异,涵盖文本分类、检索、聚类和语义相似度等多个领域。尽管体积小巧,e5-small-v2仍能有效处理多种语言,为开发者提供了一个高效且多用途的嵌入解决方案。
jina-embeddings-v2-base-zh - 基于Transformer的中文文本向量模型,适用于语义检索和相似度计算
GithubHuggingfacefeature-extractionsentence-transformers句子相似度开源项目模型模型评估自然语言处理
基于Transformer架构的中文文本向量模型,支持句子相似度计算、文本分类、检索和重排序功能。在MTEB中文基准测试中完成了医疗问答、电商等领域的评估,支持中英双语处理,采用Apache-2.0开源许可证。
gte-Qwen2-1.5B-instruct - 先进语言模型在MTEB多任务评估中的优异成绩
GithubHuggingfaceMTEBQwen2句子相似度开源项目模型模型评估自然语言处理
gte-Qwen2-1.5B-instruct模型在多任务基准测试(MTEB)中展现出优秀性能。该模型在分类、检索、聚类等NLP任务上表现突出,涵盖情感分析、句子相似度计算和问答等领域。在准确率、F1分数和MAP等关键指标上,gte-Qwen2-1.5B-instruct均取得了良好成绩,体现了其处理多样化语言任务的能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号