Project Icon

scandi-nli-large

北欧语言自然语言推理模型的性能分析

该模型针对丹麦语、挪威语和瑞典语进行了自然语言推理微调,适用于零样本分类任务,拥有多个版本。大模型在语言任务中成绩突出,MCC为73.70%,F1分数为74.44%,准确率达83.91%。基于NbAiLab/nb-bert-large模型,并综合多语言NLI数据集进行训练,实现了对北欧语言的全面支持,适用于多语言自然语言处理。

nbailab-base-ner-scandi - 斯堪的纳维亚语言的命名实体识别模型
GithubHuggingfaceScandiNER北欧语言命名实体识别开源项目数据集模型模型性能
这个模型是NbAiLab/nb-bert-base的精调版本,适用于丹麦语、挪威语、瑞典语、冰岛语和法罗语的命名实体识别(NER)。通过整合DaNE、NorNE、SUC 3.0和WikiANN的一些数据集,模型可以提供高精度的NER结果,并支持多种语言包括英语。识别的实体类型包括人名、地名、组织名及其他类别。模型以Micro-F1得分约为89%的表现,以及4.16样本/秒的处理速度表现出色,同时模型体积合理,带来好的准确性和效率平衡。
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 - mDeBERTa-v3模型实现多语言自然语言推理和零样本分类
GithubHuggingfacemDeBERTa-v3多语言开源项目机器学习模型自然语言推理零样本分类
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7是一个支持100种语言的自然语言推理和零样本分类模型。它基于mDeBERTa-v3-base架构,通过XNLI和multilingual-NLI-26lang-2mil7数据集微调,包含27种语言的270多万个文本对。该模型在XNLI和英语NLI测试中表现优异,展现出卓越的跨语言迁移能力,为多语言NLP任务提供了强大解决方案。
DeBERTa-v3-large-mnli-fever-anli-ling-wanli - 多数据集微调的自然语言推理模型 实现零样本分类和NLI任务
DeBERTa-v3-largeGithubHuggingface开源项目文本分类模型模型训练自然语言推理零样本分类
DeBERTa-v3-large-mnli-fever-anli-ling-wanli模型在多个自然语言推理数据集上进行了微调。该模型在ANLI基准测试中表现优异,是Hugging Face Hub上性能领先的NLI模型。它支持零样本分类,并在MultiNLI、ANLI、LingNLI和WANLI等数据集上达到了先进水平。这个基于Microsoft DeBERTa-v3-large的模型整合了多项创新技术,为自然语言理解任务提供了有效解决方案。
mDeBERTa-v3-base-mnli-xnli - 支持100种语言的零样本分类和自然语言推理模型
GithubHuggingfaceXNLI数据集mDeBERTa-v3多语言模型开源项目模型自然语言推理零样本分类
mDeBERTa-v3-base-mnli-xnli是一个支持100种语言的自然语言推理模型。它在XNLI和MNLI数据集上进行微调,在15种语言的XNLI测试集上达到80.8%的平均准确率。该模型可用于零样本分类和NLI任务,为多语言NLP应用提供了有效解决方案。模型基于Microsoft的mDeBERTa-v3架构,在CC100多语言数据集上预训练。
nb-wav2vec2-300m-nynorsk - 挪威语新挪威语Wav2Vec2语音识别模型
GithubHuggingfaceNbAiLab/NPSCWav2Vec2开源项目挪威语模型自动语音识别语言模型
nb-wav2vec2-300m-nynorsk是一个针对挪威语新挪威语的Wav2Vec2语音识别模型。该模型基于VoxRex特征提取器,使用NbAiLab/NPSC数据集进行微调,在NPSC测试集上达到了0.1222的词错误率(WER)和0.0419的字符错误率(CER)。作为Robust Speech Event项目的成果之一,模型及其训练代码已开源,为挪威自然语言处理社区提供了进一步改进自动语音识别技术的基础。
wav2vec2-large-danish-npsc-nst - 基于XLS-R微调的高性能丹麦语语音识别模型
GithubHuggingfacewav2vec2丹麦语开源项目模型深度学习自然语言处理语音识别模型
wav2vec2-large-danish-npsc-nst是一个针对丹麦语语音识别优化的模型,基于chcaa/xls-r-300m-danish进行微调。经过15轮训练,模型在评估集上表现出色,损失降至0.0587,词错误率仅为6.69%。采用Adam优化器、线性学习率调度和混合精度训练等先进技术,显著提升了模型性能。
robust-swedish-sentiment-multiclass - 瑞典多标签情感分类器促进文本分析
GithubHuggingfaceKBLabMegatron-BERT-large-165K多标签开源项目情感分类器模型瑞典语
该项目提供了一种经过精细调整的多标签情感分类器,基于Megatron-BERT-large-165K模型开发,对75K瑞典文本进行训练。此模型支持多种语言环境的文本分析任务,详情请参考KBLab博客。
nli-deberta-v3-large - 高效实现自然语言推断的跨编码器
GithubHuggingfaceNatural Language Inference准确性句子分类开源项目无监督分类模型模型训练
nli-deberta-v3-large是一个基于microsoft/deberta-v3-large的跨编码器模型,专用于自然语言推断。该模型在SNLI和MultiNLI数据集上训练,并能够为句子对提供矛盾、蕴涵和中性三种标签的概率评分。模型在SNLI测试集上实现了92.20的准确率,在MNLI不匹配集上达到90.49的准确率,支持零样本分类,适合多种自然语言处理应用。
deberta-large-mnli - 基于DeBERTa架构的MNLI微调大型语言模型
BERTDeBERTaGithubHuggingface开源项目模型模型性能注意力机制自然语言处理
DeBERTa-large-mnli是一个针对MNLI任务微调的大型语言模型,基于DeBERTa架构开发。该模型采用解耦注意力机制和增强型掩码解码器,在多数自然语言理解任务中表现优于BERT和RoBERTa。在SQuAD和GLUE等基准测试中,DeBERTa-large-mnli展现出优异性能。这个模型适用于各种自然语言理解应用,可为NLP研究提供有力支持。
multilingual-MiniLMv2-L6-mnli-xnli - 轻量级多语言自然语言推理与分类模型
GithubHuggingfaceMiniLMv2多语言翻译开源项目机器学习模型自然语言推理零样本分类
MiniLMv2是一款支持100多种语言的自然语言推理模型,采用知识蒸馏技术从XLM-RoBERTa-large模型优化而来。经过XNLI和MNLI数据集的微调训练,该模型在XNLI测试集达到71.3%的平均准确率。相比原始模型,具备更低的资源消耗和更快的运行速度,适合跨语言迁移学习应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号