Project Icon

lm-ner-linkedin-skills-recognition

LinkedIn技能识别的深度学习模型

该模型通过对distilbert-base-uncased进行LinkedIn领域的微调,展示出高效的技能识别性能。在评估集上,它达到了高精度(0.9119)、召回率(0.9312)和F1值(0.9214),准确率更是高达0.9912,适用于需要高可靠性技能识别的场景。

bert-base-uncased-finetuned-semeval24 - BERT微调模型在文本分类任务中的出色表现
F1GithubHuggingfacebert-base-uncased准确率开源项目损失模型精调
该微调模型基于google-bert/bert-base-uncased,采用Adam优化器和线性学习率调度策略,经过5个学习周期,在评估集合上取得了0.8254的准确率和0.8237的F1值,适用于需要精确度的文本分类任务。
bert-base-cased - 使用预训练双向Transformer模型提升语言理解能力
BERTGithubHuggingface句子分类开源项目掩码语言建模模型自监督学习预训练
BERT是一种通过自监督学习预训练的双向Transformer模型,旨在改善英语语言理解。基于大型语料库的预训练,使其能学习句子的双向表示,适用于序列分类、标记分类和问答任务。通过Masked Language Modeling和Next Sentence Prediction目标进行预训练,BERT在各类任务中展现出卓越表现,但注意选择合适的训练数据以避免潜在偏见。
gliner_multi - 灵活识别多语言实体的开源NER模型
GLiNERGithubHuggingface命名实体识别多语言模型开源项目机器学习模型自然语言处理
GLiNER-multi是一个基于双向Transformer架构的开源多语言命名实体识别模型。它能够灵活识别各种实体类型,填补了传统NER模型与大型语言模型之间的空白。该模型在Pile-NER数据集上训练,支持多语言处理,易于集成到不同的自然语言处理应用中。GLiNER-multi在保证性能的同时优化了模型规模,适用于计算资源有限的场景。
ner-english-large - 基于FLERT技术的英语命名实体识别开源模型
FlairGithubHuggingface命名实体识别序列标注开源项目模型深度学习自然语言处理
ner-english-large是基于Flair框架的英语命名实体识别模型,采用FLERT技术和XLM-R嵌入。该模型可识别人名、地点、组织和其他实体,F1分数为94.36。它易于集成,适用于多种NLP任务,为研究人员和开发者提供了实用的英语文本分析工具。
distilbert-base-uncased-finetuned-sst-2-english - 基于SST-2数据集微调的DistilBERT情感分析模型达到91.3%分类准确率
DistilBERTGithubHuggingfaceSST-2开源项目文本分类机器学习模型模型偏见
这是一个在SST-2数据集上微调的DistilBERT情感分析模型,通过优化学习参数实现91.3%的分类准确率。模型支持英文文本的情感二分类,但在处理不同国家相关文本时存在潜在偏见。作为一个轻量级BERT变体,该模型在保持性能的同时显著降低了计算资源需求。
internlm2-7b - 增强自然语言处理与长文本分析能力
GithubHuggingfaceInternLM开源开源项目性能评测模型长上下文
InternLM2-7B是一款开源自然语言处理模型,以其卓越的语言能力及对20万字符长文本的支持在评测中表现优异。适用于领域适配与复杂任务,提供代码开放与商用使用许可,便于研究与开发者的灵活使用与集成。
internlm2_5-1_8b-chat - 开源18亿参数模型提升推理能力与工具调用效率
GithubHuggingfaceInternLM工具利用开源模型开源项目推理能力模型模型性能
InternLM2.5是一个开源的18亿参数基础模型,拥有卓越的数学推理和增强的工具调用能力,其能够从多个网页搜集信息并进行分析和指令理解。在OpenCompass的评测中,该模型在MATH、GPQA等基准测试中表现突出。尽管在推理和综合能力上具有优越性,仍需注意潜在的风险输出。通过Transformers和LMDeploy工具,用户可以轻松加载和部署此模型以适应多种应用场景。
NuNER-multilingual-v0.1 - 支持九种以上语言的高性能多语言实体识别系统
GithubHuggingfaceMultilingual BERTNLPNuMind多语言模型实体识别开源项目模型
NuNER-multilingual-v0.1作为一个多语言实体识别系统,通过对多语言BERT模型进行优化,实现了对英语、法语等9种以上语言的支持。系统基于Oscar数据集训练,具备跨领域和跨语言的实体识别能力。在性能测评中,其F1宏观指标相比基础mBERT有明显提升,单层嵌入达到0.5892,双层嵌入达到0.6231的水平。该系统可直接使用或根据具体需求进行定制化训练。
internlm2-chat-7b - 70亿参数大模型实现20万字超长文本理解及多场景智能对话
GithubHuggingfaceInternLM2人工智能代码解释器大语言模型开源项目模型超长上下文
InternLM2-chat-7b作为书生·浦语第二代大模型的70亿参数版本,搭载20万字超长上下文理解技术,在复杂推理、数学运算、代码编程等核心任务上性能卓越。模型集成代码解释器和数据分析工具,通过增强型工具调用机制高效完成多步骤任务。在MMLU、AGIEval等主流评测基准上展现出同级别最优性能。该开源项目面向学术研究完全开放,同时提供免费商业授权渠道。
internlm2-base-7b - 高效处理超长文本的多功能开源模型
GithubHuggingfaceInternLM开源开源项目模型评测语言能力
InternLM2-Base-7B是一个适应性强的开源模型,支持处理长达20万字的文本,具备精确的信息检索能力,并在推理、数学、编程任务中表现优异。通过OpenCompass工具验证,其性能适合广泛应用,是研究人员和开发者的理想选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号