Project Icon

Alink

阿里巴巴开源的Flink机器学习算法平台

Alink是阿里巴巴开发的基于Flink的开源算法平台,提供丰富的机器学习算法和工具。该平台支持Java和Python接口,具有高性能和可扩展性。Alink包含完整的教程、组件列表和算法库,适用于数据分析和机器学习领域。用户可在本地或集群环境中使用Alink进行数据处理和模型训练,满足不同应用场景的需求。

英文| 简体中文

Alink

Alink是基于Flink的通用算法平台,由阿里巴巴计算平台PAI团队研发,欢迎大家加入Alink开源用户钉钉群进行交流。

Alink教程

开源算法列表

PyAlink 使用截图

快速开始

PyAlink 使用介绍

使用前准备:


包名和版本说明:

  • PyAlink 根据 Alink 所支持的 Flink 版本提供不同的 Python 包: 其中,pyalink 包对应为 Alink 所支持的最新 Flink 版本,当前为 1.13,而 pyalink-flink-*** 为旧版本的 Flink 版本,当前提供 pyalink-flink-1.12, pyalink-flink-1.11, pyalink-flink-1.10pyalink-flink-1.9
  • Python 包的版本号与 Alink 的版本号一致,例如1.6.2

安装步骤:

  1. 确保使用环境中有Python3,版本限于 3.6,3.7 和 3.8。
  2. 确保使用环境中安装有 Java 8。
  3. 使用 pip 命令进行安装: pip install pyalinkpip install pyalink-flink-1.12pip install pyalink-flink-1.11pip install pyalink-flink-1.10 或者 pip install pyalink-flink-1.9

安装注意事项:

  1. pyalinkpyalink-flink-*** 不能同时安装,也不能与旧版本同时安装。 如果之前安装过 pyalink 或者 pyalink-flink-***,请使用pip uninstall pyalink 或者 pip uninstall pyalink-flink-*** 卸载之前的版本。
  2. 出现pip安装缓慢或不成功的情况,可以参考这篇文章修改pip源,或者直接使用下面的链接下载 whl 包,然后使用 pip 安装:
    • Flink 1.13:链接 (MD5: d4b7b1fe6474b11ca7f45d0fb0daf5bc)
    • Flink 1.12:链接 (MD5: 527b9ac24383ccc8593cd61b06cc610d)
    • Flink 1.11:链接 (MD5: 7e59ba00b3739386996cf55d8f522ed2)
    • Flink 1.10:链接 (MD5: 6d5d9048c9a44f27285467c5117e8deb)
    • Flink 1.9: 链接 (MD5: e89ac35a6a1c63c0426f3d9ca1025880)
  3. 如果有多个版本的 Python,可能需要使用特定版本的 pip,比如 pip3;如果使用 Anaconda,则需要在 Anaconda 命令行中进行安装。

开始使用:


可以通过 Jupyter Notebook 来开始使用 PyAlink,能获得更好的使用体验。

使用步骤:

  1. 在命令行中启动Jupyter:jupyter notebook,并新建 Python 3 的 Notebook 。
  2. 导入 pyalink 包:from pyalink.alink import *
  3. 使用方法创建本地运行环境: useLocalEnv(parallism, flinkHome=None, config=None)。 其中,参数 parallism 表示执行所使用的并行度;flinkHome 为 flink 的完整路径,一般情况不需要设置;config为Flink所接受的配置参数。运行后出现如下所示的输出,表示初始化运行环境成功:
JVM listening on ***
  1. 开始编写 PyAlink 代码,例如:
source = CsvSourceBatchOp()\
    .setSchemaStr("sepal_length double, sepal_width double, petal_length double, petal_width double, category string")\
    .setFilePath("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/iris.csv")
res = source.select(["sepal_length", "sepal_width"])
df = res.collectToDataframe()
print(df)

编写代码:


在 PyAlink 中,算法组件提供的接口基本与 Java API 一致,即通过默认构造方法创建一个算法组件,然后通过 setXXX 设置参数,通过 link/linkTo/linkFrom 与其他组件相连。 这里利用 Jupyter Notebook 的自动补全机制可以提供书写便利。

对于批式作业,可以通过批式组件的 print/collectToDataframe/collectToDataframes 等方法或者 BatchOperator.execute() 来触发执行;对于流式作业,则通过 StreamOperator.execute() 来启动作业。

更多用法:


Java 接口使用介绍


示例代码

String URL = "https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/iris.csv";
String SCHEMA_STR = "sepal_length double, sepal_width double, petal_length double, petal_width double, category string";

BatchOperator data = new CsvSourceBatchOp()
        .setFilePath(URL)
        .setSchemaStr(SCHEMA_STR);

VectorAssembler va = new VectorAssembler()
        .setSelectedCols(new String[]{"sepal_length", "sepal_width", "petal_length", "petal_width"})
        .setOutputCol("features");

KMeans kMeans = new KMeans().setVectorCol("features").setK(3)
        .setPredictionCol("prediction_result")
        .setPredictionDetailCol("prediction_detail")
        .setReservedCols("category")
        .setMaxIter(100);

Pipeline pipeline = new Pipeline().add(va).add(kMeans);
pipeline.fit(data).transform(data).print();

Flink-1.13 的 Maven 依赖

<dependency>
    <groupId>com.alibaba.alink</groupId>
    <artifactId>alink_core_flink-1.13_2.11</artifactId>
    <version>1.6.2</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-scala_2.11</artifactId>
    <version>1.13.0</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table-planner_2.11</artifactId>
    <version>1.13.0</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-clients_2.11</artifactId>
    <version>1.13.0</version>
</dependency>

Flink-1.12 的 Maven 依赖

<dependency>
    <groupId>com.alibaba.alink</groupId>
    <artifactId>alink_core_flink-1.12_2.11</artifactId>
    <version>1.6.2</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-scala_2.11</artifactId>
    <version>1.12.1</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table-planner_2.11</artifactId>
    <version>1.12.1</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-clients_2.11</artifactId>
    <version>1.12.1</version>
</dependency>

Flink-1.11 的 Maven 依赖

<dependency>
    <groupId>com.alibaba.alink</groupId>
    <artifactId>alink_core_flink-1.11_2.11</artifactId>
    <version>1.6.2</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-scala_2.11</artifactId>
    <version>1.11.0</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table-planner_2.11</artifactId>
    <version>1.11.0</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-clients_2.11</artifactId>
    <version>1.11.0</version>
</dependency>

Flink-1.10 的 Maven 依赖

<dependency>
    <groupId>com.alibaba.alink</groupId>
    <artifactId>alink_core_flink-1.10_2.11</artifactId>
    <version>1.6.2</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-scala_2.11</artifactId>
    <version>1.10.0</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table-planner_2.11</artifactId>
    <version>1.10.0</version>
</dependency>

Flink-1.9 的 Maven 依赖

<dependency>
    <groupId>com.alibaba.alink</groupId>
    <artifactId>alink_core_flink-1.9_2.11</artifactId>
    <version>1.6.2</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-scala_2.11</artifactId>
    <version>1.9.0</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table-planner_2.11</artifactId>
    <version>1.9.0</version>
</dependency>

快速开始在集群上运行Alink算法


  1. 准备Flink集群
  wget https://archive.apache.org/dist/flink/flink-1.13.0/flink-1.13.0-bin-scala_2.11.tgz
  tar -xf flink-1.13.0-bin-scala_2.11.tgz && cd flink-1.13.0
  ./bin/start-cluster.sh
  1. 准备Alink算法包
  git clone https://github.com/alibaba/Alink.git
  # 在alink_examples的pom.xml中添加<scope>provided</scope>
  cd Alink && mvn -Dmaven.test.skip=true clean package shade:shade
  1. 运行Java示例
  ./bin/flink run -p 1 -c com.alibaba.alink.ALSExample [path_to_Alink]/examples/target/alink_examples-1.5-SNAPSHOT.jar
  # ./bin/flink run -p 1 -c com.alibaba.alink.GBDTExample [path_to_Alink]/examples/target/alink_examples-1.5-SNAPSHOT.jar
  # ./bin/flink run -p 1 -c com.alibaba.alink.KMeansExample [path_to_Alink]/examples/target/alink_examples-1.5-SNAPSHOT.jar

部署


集群部署

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号