Project Icon

MNN

高效轻量的深度学习框架,支持多设备推理和训练

MNN是一个高效轻量的深度学习框架,支持设备上的推理和训练。已被阿里巴巴30多个应用集成,覆盖直播、短视频、搜索推荐等70多种场景。MNN适用于嵌入式设备,支持TensorFlow、Caffe、ONNX等多种模型格式,并优化了ARM和x64 CPU及多种GPU的计算性能。通过MNN Workbench,用户可以下载预训练模型、进行可视化训练并一键部署到设备上。

onnx - 跨平台开源机器学习模型交换格式
GithubGlobal Corporation人工智能企业安全开源项目社交媒体跨平台应用
ONNX是一种开放的机器学习模型表示格式,支持跨框架模型互操作。它定义了统一的模型表示方式,实现不同AI框架间的模型转换。ONNX简化模型部署过程,提升AI应用效率。作为行业标准,ONNX促进AI生态系统发展,为开发者和企业带来更多可能性。
oneDNN - 优化深度学习应用的跨平台性能库,支持多种处理器架构
CPU优化GithubUXL Foundationdeep learningoneAPI specificationoneDNN开源项目
oneAPI Deep Neural Network Library (oneDNN) 是一个开源的跨平台性能库,提供深度学习应用的核心模块。oneDNN 专为Intel架构处理器、Intel图形处理器和Arm 64位架构处理器进行优化,并实验性支持NVIDIA、AMD、OpenPOWER、IBMz 和 RISC-V 等架构的 GPU 和 CPU。深度学习应用及框架开发者可以利用oneDNN提升在多种硬件上的性能表现。
tiny-cuda-nn - 专注于快速训练和查询神经网络的开源框架
C++编程CUDAGPUGithubTiny CUDA Neural Networks开源项目深度学习
Tiny CUDA Neural Networks是一个紧凑、高效的开源框架,专注于快速训练和查询神经网络。它包含优化的多层感知器(MLP)和多分辨率哈希编码,并支持多种输入编码、损失函数和优化器。适用于NVIDIA GPU,通过C++/CUDA API和PyTorch扩展,助力高性能计算和深度学习项目。
mnasnet_100.rmsp_in1k - MNasNet轻量级移动端图像分类模型
GithubHuggingfaceImageNet-1kMNasNettimm图像分类开源项目模型神经网络架构
mnasnet_100.rmsp_in1k是基于MNasNet架构的轻量级图像分类模型,针对移动设备优化设计。该模型在ImageNet-1k数据集上训练,通过timm库实现。它采用RMSProp优化器和指数衰减学习率,参数量为4.4M,GMACs为0.3,适用于224x224像素图像。模型支持图像分类、特征提取和嵌入等功能,为移动端AI应用提供高效解决方案。
InferLLM - 轻量化语言模型推理框架,兼容多种模型格式和设备
GithubInferLLMllama.cpp多模型兼容开源项目模型推理高效率
InferLLM 是一个高效简洁的语言模型推理框架,源于 llama.cpp 项目。主要特点包括结构简单、高性能、易于上手,并支持多模型格式。目前兼容 CPU 和 GPU,可优化 Arm、x86、CUDA 和 riscv-vector,并支持移动设备部署。InferLLM 引入了专有 KVstorage 类型以简化缓存和管理,适合多种应用场景。最新支持的模型包括 LLama-2-7B、ChatGLM、Alpaca 等。
MiniCPM - 轻量级大语言模型实现高性能端侧部署
GithubMiniCPM多模态开源模型开源项目模型量化端侧大语言模型
MiniCPM是一系列高效的端侧大语言模型,仅有2.4B非词嵌入参数。经过优化后,在多项评测中表现优异,甚至超越了一些参数量更大的模型。该项目支持多模态功能,可在移动设备上流畅运行。MiniCPM开源了多个版本,涵盖文本、多模态、量化和长文本等应用场景,适用于学术研究和特定商业用途。这一开源项目由面壁智能与清华大学自然语言处理实验室联合开发。
llama.onnx - LLaMa和RWKV模型的ONNX实现及独立演示,支持多设备部署
GithubLLaMaRWKVonnx模型开源项目推理量化
此项目提供LLaMa-7B和RWKV-400M的ONNX模型与独立演示,无需torch或transformers,适用于2GB内存设备。项目包括内存池支持、温度与topk logits调整,并提供导出混合精度和TVM转换的详细步骤,适用于嵌入式设备和分布式系统的大语言模型部署和推理。
swift - 轻量级基础架构,专为深度学习开发者打造的训练与推理框架
GithubSWIFT在线工具多模态大模型开源项目模型培训深度学习
SWIFT平台支持超过300种大型语言模型与50多种多模态模型的训练、微调和部署。提供NEFTune、LoRA+、LLaMA-PRO等先进的训练技术及适配器库,针对各种研发和生产环境。同时,平台提供Gradio web-ui及深度学习课程助力初学者快速上手。
multilingual-MiniLMv2-L6-mnli-xnli - 轻量级多语言自然语言推理与分类模型
GithubHuggingfaceMiniLMv2多语言翻译开源项目机器学习模型自然语言推理零样本分类
MiniLMv2是一款支持100多种语言的自然语言推理模型,采用知识蒸馏技术从XLM-RoBERTa-large模型优化而来。经过XNLI和MNLI数据集的微调训练,该模型在XNLI测试集达到71.3%的平均准确率。相比原始模型,具备更低的资源消耗和更快的运行速度,适合跨语言迁移学习应用。
neon - 深度学习框架,兼容多硬件,实现高效模型训练
GithubIntelMKLNervananeon开源项目深度学习框架
neon是Intel推出的深度学习框架,旨在实现最佳性能,兼容多种硬件。提供全面的教程和iPython笔记本,支持卷积层、RNN、LSTM、GRU和BatchNorm等常用层。预训练模型库和示例脚本涵盖VGG、强化学习、深度残差网络等。neon v2.0.0+优化了CPU性能,集成Intel Math Kernel Library,用户可快速安装并部署在CPU、GPU或Nervana硬件上。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号