Project Icon

graph-learn

大规模分布式图神经网络框架,兼容PyTorch和TensorFlow

Graph-Learn是一款分布式框架,专为开发和应用大规模图神经网络(GNN)而设计,已成功应用于阿里巴巴的搜索推荐、网络安全和知识图谱等场景。框架包括GraphLearn-Training和Dynamic-Graph-Service模块,支持批量图采样、在线推理及流图更新功能,兼容PyTorch和TensorFlow,提供完整的GNN模型开发解决方案。

graph-based-deep-learning-literature - 探索基于图的深度学习最新文献与会议进展
GithubICMLNeurIPS图形深度学习开源项目数据挖掘计算机视觉
该项目收录了基于图的深度学习领域内,例如NeurIPS、ICML和ICLR等顶级会议的出版物、相关工作坊、综述文章、书籍以及软件资源链接。这些资源为学术研究人员和专业学者提供了方便的一站式服务,便于他们探索、查询及利用该领域内的最新科研成果和工具。
GraphGPT - 基于图指令微调的大语言模型知识对齐框架
GithubGraphGPT图学习图结构知识大语言模型开源项目指令微调
GraphGPT是一个将大语言模型与图结构知识对齐的创新框架。该框架通过文本-图谱接地编码结构信息,采用双阶段图指令微调适应图学习任务,并运用思维链蒸馏提升推理能力。GraphGPT有效增强了语言模型对图数据的理解和处理能力,为图结构数据分析提供了新的研究方向。
Awesome-Graph-Prompt - 图神经网络提示学习研究和应用资源集合
Github图域迁移图提示学习图神经网络多模态融合大语言模型开源项目
Awesome-Graph-Prompt是一个关于图神经网络提示学习的精选资源集合。它汇总了GNN提示、多模态图提示、图域适应等领域的最新研究论文,同时收录了相关开源代码、基准测试和数据集。该项目为图提示学习研究提供了全面的参考资料,有助于推动图神经网络在各类下游任务中的应用。
nebula - 开源分布式图数据库系统
GithubNebulaGraph分布式系统图数据库大规模数据处理开源项目数据存储
NebulaGraph是一个开源分布式图数据库系统,专为处理大规模图数据而设计。它采用存储计算分离架构,支持水平扩展,通过RAFT协议确保数据一致性。系统提供兼容OpenCypher的查询语言,可用于社交网络、推荐系统、知识图谱等领域。NebulaGraph具有毫秒级查询性能、灵活的扩展性和强大的图分析功能,能够满足企业在图数据管理和分析方面的需求。
graph_nets - DeepMind的图神经网络库,支持TensorFlow和Sonnet
GithubGraph NetsSonnetTensorFlow安装开源项目演示
Graph Nets是由DeepMind开发的图神经网络库,兼容TensorFlow和Sonnet。支持Linux和Mac OS X,以及Python 2.7和3.4+。该库适用于CPU和GPU版本的TensorFlow,但需要单独安装TensorFlow。Graph Nets提供了详细的安装指南、使用示例和多个演示,包括最短路径、排序和物理预测任务。用户可以通过Colaboratory在浏览器中运行这些演示,体验图神经网络的灵活性和强大功能。
CogDL - 应用于节点分类、图分类等任务的图深度学习工具包
CogDLGNNGPU优化Github图深度学习开源项目自动机器学习
CogDL是一个应用于节点分类、图分类等任务的图深度学习工具包。它具备高效性、易用性和可扩展性的特点,通过提供优化的操作符加快训练速度并节省GPU内存。CogDL还提供易用的API,并支持广泛的模型和数据集。最新版新增了图自监督学习示例和混合精度训练功能,适用于多种图神经网络分析任务。
graphsignal-python - Graphsignal为AI应用提供全面观测与性能优化
AI观测GithubGraphsignal应用监控开源项目性能分析错误追踪
Graphsignal是一个面向AI代理和LLM应用的观测平台,提供AI上下文追踪、交互评分、延迟分析、成本监控和异常检测等功能。该平台支持OpenAI和LangChain等主流框架,性能开销低,可帮助开发者轻松监控和分析AI应用,提升整体运行效果。通过Graphsignal,开发团队能够更好地了解AI应用的运行状况,及时发现并解决潜在问题。该平台采用自动化集成方式,便于开发者快速部署,实现AI应用的实时监控和性能优化。
ogb - OGB开源项目的图机器学习数据集及标准评估工具
GithubOpen Graph Benchmark图机器学习开源项目数据加载器深度学习框架评估器
OGB项目集成了图机器学习所需的基准数据集、数据加载器和标准化评估工具,兼容PyTorch Geometric和DGL等主流深度学习框架。支持处理节点、链接和图级别的预测任务,数据集广泛涵盖科学、社交网络和异构知识图等领域,并适应从单GPU到多GPU的处理需求。OGB为研究人员提供了简化数据下载、标准化拆分和性能评估的便利工具。
llm-graph-builder - 使用大型语言模型从非结构化数据中构建知识图谱
DiffbotGithubKnowledge GraphLLMNeo4jOpenAI开源项目
llm-graph-builder是一款利用OpenAI、Gemini等大型语言模型转化非结构化数据如PDF、文档、视频和网络页面等为结构化知识图谱的应用。此应用支持用户上传文件、自定义图谱模式,并使用Langchain框架进行图谱生成。用户还可以在多源数据环境下查看图谱,并通过对话查询与数据交互。
graphics - 深度学习与计算机图形学的融合框架
3D视觉GithubTensorFlow Graphics开源项目机器学习神经网络计算机图形学
TensorFlow Graphics是一个融合深度学习与计算机图形学的开源框架。它提供可微分的图形和几何层,包括相机模型、反射模型、空间变换和网格卷积等,同时支持3D可视化。这些工具可用于开发和优化3D视觉任务的机器学习模型,如物体姿态估计、材质分析和语义分割。该框架致力于帮助研究人员和开发者更高效地解决复杂的3D视觉问题。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号