Project Icon

Production-Level-Deep-Learning

生产级深度学习系统的部署与优化工程指南

本项目提供全面的工程指南,指导在实际应用中部署生产级深度学习系统。涵盖数据管理、开发、训练、评估、测试和部署等关键模块,并推荐最佳实践和工具。内容借鉴Full Stack Deep Learning Bootcamp、TFX Workshop和Pipeline.ai的高级KubeFlow Meetup,确保用户应对从模型训练到生产部署的各种挑战。

Recommender_System - 推荐系统全面指南:从理论基础到工业实践
GithubGolangTensorFlow召回开源项目排序推荐系统
本项目系统介绍工业级推荐系统的理论知识,包括召回、排序、特征交叉和用户行为序列建模等核心环节。内容涵盖基于TensorFlow2的模型训练,以及高性能、高并发、高可用的Golang推理微服务实现。同时提供Scikit-learn和TensorFlow编程基础,为推荐系统学习者提供全面的知识体系和实践指导。
awesome-deep-learning - 开源深度学习资源集合,覆盖书籍、课程、视频和研究论文等
Github人工智能大数据开源项目机器学习深度学习神经网络
awesome-deep-learning提供全面的开源深度学习资源集合,覆盖书籍、课程、视频和研究论文等,适合各阶段学习者深入探索。通过更新最新技术和理论,推动知识和技术的不断进步。
kubernetes-learning - Docker和Kubernetes实践指南,从入门到精通
CNCFDockerGithubKubernetes云原生容器编排开源项目
这是一个全面的Docker和Kubernetes学习资源,涵盖从基础到高级的内容。教程包括Docker基础、Kubernetes集群搭建、运行原理、控制器使用、调度策略、运维技巧、Helm工具应用等。还介绍了基于Kubernetes的CI/CD实现,为开发者提供了系统化的容器化和云原生技术学习路径。
Data-science - 数据科学项目的综合资源库和实践指南
GitHubGithubMLOpsPython开源项目数据科学机器学习
Data-science项目汇集了丰富的数据科学资源,涵盖MLOps、数据管理、测试和生产力工具等领域。通过文章、代码和视频教程,该项目全面展示了数据科学工作流程,从项目管理到部署。它为数据科学家和机器学习工程师提供了提高效率、构建可靠项目的实用指南。
awesome-kubeflow - Kubeflow开源生态系统 云原生机器学习工作流平台
GithubKubeflowKubernetesMLOps云原生开源项目机器学习工作流
Awesome-kubeflow收录了Kubeflow相关的优质项目和资源。作为CNCF孵化项目,Kubeflow致力于简化Kubernetes上的机器学习工作流部署。该列表涵盖Kubeflow核心组件、生态系统项目、书籍、博客和视频等全方位资源,适合开发者和数据科学家了解Kubeflow并应用于MLOps实践。
Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials - 最新的机器学习、深度学习和人工智能教程集锦
AI应用GithubPyTorchTensorFlow开源项目机器学习深度学习
该项目提供了涵盖机器学习、深度学习和人工智能的最新教程,强调在GPU编程、数据中心人工智能以及与Web3相关的可持续人工智能等领域的最新动向。集成了PyTorch、TensorFlow等工具和库的实战案例,助力用户精通深度学习技术,同时展示技术在交通、医疗等领域的应用前景。
llm-twin-course - 构建生产级AI副本从设计到部署的全面实战课程
GithubLLM TwinLLMOps开源项目数据工程生产就绪AI副本部署
LLM Twin Course是一个免费课程,旨在指导学员如何设计、训练并部署生产级LLM副本。参与者将了解基于LLMOps最佳实践来构建适用于实际应用的LLM系统,涵盖从数据采集、特征处理到训练和推理的完整开发流程,并熟悉实验跟踪、模型注册和版本控制等核心MLOps技术。该课程适合有基础Python、机器学习及云服务经验的MLE、DE、DS或SWE专业人士。
learning-to-learn - TensorFlow和Sonnet在深度学习中的训练和评估优化指南
GithubSonnetTensorFlow优化器开源项目训练评估
了解如何使用TensorFlow和Sonnet在MNIST和CIFAR10等数据集上进行模型训练和评估。本文详细说明了命令行参数,涵盖了训练和评估的步骤,并介绍了从简单二次函数到复杂卷积神经网络的不同问题解决方案。掌握这些方法,可以实现自定义优化器并提高模型性能。
advanced-machine-learning-engineer-roadmap-2024 - 全面全栈机器学习工程师成长指南
Full Stack MLGithubPython 编程开源项目数据分析机器学习深度学习
掌握全栈机器学习工程师所需的各项技能,从数据收集与预处理到模型部署与维护,涵盖Python编程、数据分析、数据可视化、统计学、机器学习、自然语言处理、深度学习、计算机视觉、MLOps及Git与GitHub的使用。通过具体步骤和示例逐步提升专业能力。
Complete-Life-Cycle-of-a-Data-Science-Project - 数据科学项目全生命周期实践指南
APIGithubweb爬虫开源项目数据收集数据科学数据集
该项目提供了数据科学项目完整生命周期的实践指南。涵盖数据收集、清洗、特征工程、模型训练及部署全过程。详细介绍网络爬虫、API、数据库等数据获取方法,并汇总多个开放数据集资源。同时包含数据预处理、特征选择、模型评估等关键环节的最佳实践。对数据科学学习者和从业人员具有重要参考价值,有助于全面把握数据科学项目流程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号