Project Icon

MistralLite

适用于长文本处理与问答任务的优化语言模型

MistralLite作为一种优化的语言模型,基于Mistral-7B,通过适应性转子嵌入和滑窗技术,支持32K tokens的长文本处理。它适用于长文本检索、摘要和问答等应用,尤其适合资源有限的环境。可在单个AWS实例轻松部署,支持HuggingFace TGI和vLLM等框架,适合复杂文本场景的精准解析。

cookbook - 大型语言模型应用开发与优化实用指南
AI模型GithubMistral开源项目数据处理机器学习示例代码
Mistral Cookbook 汇集了社区贡献的大型语言模型应用实例,涵盖基础聊天、嵌入、RAG、函数调用和微调等多个方面。项目包含Mistral AI官方示例和第三方工具集成,为开发者提供了全面的LLM应用开发资源。
DeepSeek-V2-Lite - 创新架构驱动的高效混合专家语言模型
DeepSeek-V2GithubHuggingface多头潜在注意力大规模语言模型开源项目模型混合专家模型自然语言处理
DeepSeek-V2-Lite是一款采用创新架构的混合专家(MoE)语言模型。通过多头潜在注意力(MLA)和DeepSeekMoE技术,该模型实现了训练和推理的高效性。模型总参数量为16B,激活参数为2.4B,在多项英文和中文基准测试中表现优异,超越了同类7B密集模型和16B MoE模型。DeepSeek-V2-Lite支持单40G GPU部署和8x80G GPU微调,为自然语言处理研究提供了一个高性能且资源友好的选择。
Mistral-Large-Instruct-2407-GGUF - Mistral-Large-Instruct-2407模型的多语言量化方法与文件选择建议
GPU性能优化GithubHuggingfaceMistral-Large-Instruct-2407开源项目文本生成模型量化量化格式
Mistral-Large-Instruct-2407项目提供了多种语言支持的模型量化版本。通过llama.cpp工具,用户可以根据不同的RAM和VRAM需求进行量化。文章详细介绍每种量化文件的特性与性能建议,帮助用户根据硬件条件选取适合的文件,实现模型的快速或高质量运行。推荐关注K-quant与I-quant格式文件以在性能与速度间取得平衡。
Mistral-Nemo-Instruct-2407-bnb-4bit - 高效LLM微调框架提速2-5倍并减少70%内存使用
GithubHuggingfaceUnsloth加速训练大语言模型开源项目微调模型节省内存
该项目为Mistral、Gemma、Llama等大语言模型提供高效微调框架。利用Unsloth技术,训练速度提升2-5倍,内存使用减少70%。项目提供多个免费Google Colab笔记本,支持Llama-3 8b、Gemma 7b、Mistral 7b等模型训练。框架操作简单,适合初学者使用,支持将微调模型导出为GGUF、vLLM格式或上传至Hugging Face平台。
Mistral-Ita-7b - 基于Mistral架构的意大利语自然语言处理模型
GithubHuggingfaceMistral-7B开源项目意大利语言模型文本生成模型模型量化自然语言处理
Mistral-Ita-7b是基于Mistral-7B-v0.1架构开发的意大利语言模型,在hellaswag_it、arc_it和m_mmlu_it测试中平均准确率为58.66%。模型支持4位量化,可降低资源占用并提升处理效率。通过Python接口可实现意大利语文本生成及其他自然语言处理功能。
Mistral-Nemo-Instruct-2407-vllm-fp8 - 开源多语言指令微调大模型
Apache 2许可GithubHuggingfaceMistral-Nemo-Instruct-2407多语言大语言模型开源项目指令微调模型
Mistral-Nemo-Instruct-2407是Mistral AI与NVIDIA联合开发的开源指令微调语言模型。该模型在128K上下文窗口训练,支持多语言和代码生成,性能优于同等规模模型。采用Apache 2许可,可替代Mistral 7B使用。模型在多项基准测试中表现出色,支持mistral_inference、transformers和NeMo等框架进行推理。
TowerInstruct-Mistral-7B-v0.2 - Mistral架构多语言翻译模型实现十种语言互译及语言处理
GithubHuggingfaceMistralTowerInstruct多语言翻译开源项目机器学习模型语言模型
TowerInstruct-Mistral-7B-v0.2是一款经TowerBlocks数据集微调的7B参数语言模型。该模型支持英语、德语、法语等十种主要语言,具备句子及段落翻译、术语识别翻译、上下文感知翻译等核心能力。同时集成自动后期编辑、命名实体识别、语法纠错和释义生成等功能。与13B版本相比,保持相近性能的同时将模型规模减半。
LLM2Vec-Mistral-7B-Instruct-v2-mntp - 将大型语言模型转变为高效文本编码器的简单方法
GithubHuggingfaceLLM2Vec开源项目文本编码模型深度学习自然语言处理语义相似度
LLM2Vec-Mistral-7B-Instruct-v2-mntp项目提供了一种将解码器型大语言模型转换为文本编码器的方法。该方法包括启用双向注意力、掩码下一个词预测和无监督对比学习三个步骤。经过转换的模型可生成高质量文本嵌入,适用于信息检索、文本分类和语义相似度等自然语言处理任务,并可通过微调进一步提升性能。
Play-with-LLMs - 一系列关于大型语言模型的训练、评估和应用的详细指南
GithubLLM应用Mistral-8x7b-Instruct中文实现大型语言模型开源项目模型微调
Play-with-LLMs提供一系列关于大型语言模型的训练、评估和应用的详细指南,涉及RAG、Agent、Chain等多种结构,包括多个实用案例和应用代码。项目旨在帮助开发者迅速掌握并深入理解大型语言模型。
Mistral-Small-22B-ArliAI-RPMax-v1.1-GGUF - 高创意RP模型,强调多样性与个性化
GithubHuggingfaceMistral-Small-22B-ArliAI-RPMax-v1.1开源项目模型训练量化非重复性
Mistral-Small-22B-ArliAI-RPMax-v1.1基于Mistral-Small-Instruct-2409开发,特别强调多样性和独创性。该模型经过精心的数据选择,避免重复,具备良好的创意表达能力。模型在多种量化格式中可用,训练过程注重减少重复情况,仅供个人使用。用户可以通过多种平台获取此模型,并参与社区讨论。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号