Project Icon

Android-TensorFlow-Lite-Example

在Android应用中集成TensorFlow Lite的介绍,用于通过相机图像进行对象检测

该项目展示了如何在Android应用中集成TensorFlow Lite,用于通过相机图像进行对象检测。这是一个适合学习和实际应用的机器学习示例项目。

react-native-fast-tflite - React Native TensorFlow Lite库,支持JSI和GPU加速
GPU DelegateGithubJSIReact NativeTensorFlow LiteVisionCamera开源项目
这是一个高效的React Native TensorFlow Lite库,支持JSI和零拷贝ArrayBuffers,采用低级C/C++ TensorFlow Lite核心API实现直接内存访问,支持运行时模型交换和GPU加速(CoreML/Metal/OpenGL),并易于集成VisionCamera。该库允许轻松添加和加载TensorFlow Lite模型,支持从本地文件系统或远程URL加载模型,非常适合需要高效且灵活AI推理功能的React Native开发者,在应用中实现先进的计算机视觉和AI功能。
coreml-examples - CoreML演示应用集合展示苹果神经引擎优化技术
CoreMLGithubiOS开发开源项目机器学习模型优化苹果神经引擎
该仓库收录了多个为苹果神经引擎优化的CoreML演示应用,展示了先进机器学习模型在iOS设备上的应用。涵盖FastViT图像分类、Depth Anything V2单目深度估计和DETR语义分割等模型。这些实例不仅展示CoreML功能,还为开发者提供在iOS设备上部署复杂机器学习模型的参考。项目采用coremltools进行优化和测试,是iOS机器学习开发的重要学习资源。
DeepLearningExamples - 优化深度学习训练和部署的最佳实践
CUDA-XDeep LearningGithubNGCNVIDIATensor Cores开源项目
提供最新的深度学习示例,使用NVIDIA CUDA-X软件栈在Volta、Turing和Ampere GPU上运行,确保最佳的可重复精度和性能。示例通过NGC容器注册表每月更新,包含最新的NVIDIA贡献和深度学习软件库,支持计算机视觉、自然语言处理、推荐系统、语音识别、文本到语音转换、图神经网络和时间序列预测模型。
Tensorflow-Project-Template - 结合了简单性、文件夹结构的最佳实践和良好的 OOP 设计的简介深度学习项目模板
GithubOOP设计Tensorflow开源项目模板深度学习项目结构
一个设计简洁的深度学习项目模板,结合了简单性、良好的文件夹结构和优秀的OOP设计,帮助开发者更快地启动主要项目,专注于核心部分(如模型和训练)。模板封装了常见功能,使得开发者仅需更改核心内容即可轻松启动新的TensorFlow项目。主要组件包括模型、训练器、数据加载器和日志记录器,提供详细的使用示例和项目架构图。
djl-demo - 深度Java库示例集,推理、训练到多平台深度学习应用
Deep Java LibraryGithubJava API开源项目模型部署深度学习示例应用
代码仓库包含丰富的Deep Java Library (DJL)示例,展示了其在推理、训练、移动应用开发、云服务集成和大数据处理方面的多样化应用。涉及图像分类、对象检测和自然语言处理等领域,并提供了跨平台深度学习模型部署方案。这些实例有助于开发者迅速掌握DJL技术,并在多种实际场景中应用。
stanford-tensorflow-tutorials - CS 20课程的TensorFlow深度学习代码示例和课程进度
CS 20GithubPythonTensorFlowstanford-tensorflow-tutorials开源项目深度学习
提供斯坦福CS 20课程的TensorFlow代码示例和详细课程笔记,涵盖Python 3.6与TensorFlow 1.4.1,实时更新课程进度,包含前一年课程的资源。详细信息见课程大纲和设置指南。
a-PyTorch-Tutorial-to-Object-Detection - PyTorch物体检测模型教程与实现
GithubPyTorch单发多框检测卷积神经网络多尺度特征图对象检测开源项目
本教程详细指导如何使用PyTorch实现物体检测模型,包括模型构建、训练、评估和推理等环节。采用高效的单次多框检测(SSD)算法,介绍多尺度特征图、先验框和非极大值抑制等关键概念。适合具备PyTorch和卷积神经网络基础的学习者,教程提供中文翻译版便于理解和应用。
SmartOpenCV - Android平台的增强型计算机视觉库
GithubOpenCVSmartOpenCV图像处理开源项目端侧智能计算机视觉
SmartOpenCV是一个用于Android平台的增强型OpenCV库,解决了官方SDK在图像预览中的问题。无需修改SDK源码,只需替换xml标签,即可自动适应摄像头参数、横竖屏切换及预览帧大小。该库支持USB摄像头,提供友好的API接口,方便开发者灵活控制预览显示。SmartOpenCV与官方SDK解耦,确保项目能够轻松升级至最新版本。
ultimateALPR-SDK - 车牌识别及多功能车辆特性检测解决方案
AndroidDeep LearningGithubLicense Plate RecognitionNVIDIAUltimateALPR开源项目
结合最新深度学习技术,ultimateALPR-SDK 提供卓越的识别速度和精度。适用于多个操作系统和编程语言,功能包括车牌识别、夜视图像增强、车辆颜色识别等。通过内置计算减少系统成本,无需专用硬件或网络连接,适用于智能交通。支持多平台并附有详细文档和示例程序,帮助开发者迅速上手。
jetson-inference - 深度学习部署与实时视觉识别
GithubNVIDIA JetsonPyTorchTensorRT实时视觉开源项目深度学习
NVIDIA Jetson设备上的深度学习推理和实时视觉处理库。使用TensorRT优化GPU网络运行,支持C++和Python, 以及PyTorch模型训练。功能包括图像分类、物体检测、语义分割等,适用于多种应用场景,如实时摄像头流和WebRTC网络应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号