Project Icon

pyaf

Python开源库实现自动化时间序列预测

PyAF是一个开源的Python自动预测库,基于NumPy、SciPy等流行数据科学模块构建。该库利用机器学习方法自动预测时间序列未来值,功能comparable于一些商业预测产品。它支持信号分解、外生数据和层次预测,提供简洁API和可定制建模过程。PyAF适用于Python 3.x,采用BSD 3-Clause许可证。PyAF可用于销售预测、股票走势分析、能源需求预测等多种时间序列预测任务。

feature-engineering-for-time-series-forecasting - 时间序列预测特征工程全面指南
GithubPython开源项目数据处理时间序列预测机器学习特征工程
该项目提供时间序列预测特征工程的全面指南,涵盖数据表格化、时间序列分解、缺失值处理和异常值检测等核心内容。深入介绍滞后特征、窗口特征、趋势和季节性特征的创建方法,以及日期时间和分类特征的处理技巧。通过实践代码和详细说明,旨在提升预测模型性能。
darts - Python中易于使用的时间序列预测与异常检测库
DartsGithub开源项目异常检测时间序列概率预测深度学习
Darts是一个用户友好且灵活的Python库,专注于时间序列的预测与异常检测。它提供了一系列从ARIMA到深度神经网络的多样化模型,通过统一的fit()和predict()接口简化操作,类似于scikit-learn。此外,Darts支持包括多变量和外部数据在内的复杂时间序列处理,并为大规模数据集提供高效解决方案。它还拥有全面的异常检测功能,允许进行深入的异常分析和评分。
nolitsa - 全面的Python非线性时间序列分析库
GithubLyapunov指数NoLiTSAPython模块嵌入维度估计开源项目非线性时间序列分析
NoLiTSA是一个开源Python模块,专门用于非线性时间序列分析。它实现了多种标准算法,如嵌入延迟估计、维度估计、相关维数计算和最大Lyapunov指数估计。模块支持FT、AAFT和IAAFT替代数据生成,并提供噪声减少功能。NoLiTSA适用于复杂的时间序列分析任务,已在天体物理学和流体动力学研究中应用,为科研人员提供了可靠的分析工具。
pyAudioAnalysis - Python音频分析库 实现特征提取分类和分割
GithubPython库分类器开源项目机器学习特征提取音频分析
pyAudioAnalysis是一个开源的Python音频分析库,提供音频特征提取、分类、分割等功能。它支持分类器训练评估、未知声音分类、事件检测、监督/非监督分割、回归模型训练和数据可视化。通过Python接口或命令行,可实现复杂的音频分析任务。适用于音乐识别、语音处理等领域,为音频分析提供全面解决方案。
tspiral - 优化时间序列预测的Python工具包
GithubPython包scikit-learntspiral开源项目时间序列预测机器学习
tspiral是一个专注于时间序列预测的Python工具包,提供多种优化技术如递归预测、直接预测、堆叠预测和修正预测。它与scikit-learn兼容,支持全局和多变量时间序列预测,并提供简洁API。tspiral将复杂的时间序列问题转化为表格式监督回归任务,方便用户利用scikit-learn生态系统进行预测分析。
gluonts - 基于深度学习的概率时间序列建模工具包
GithubGluonTSPython开源项目时间序列预测概率模型深度学习
GluonTS是一个基于Python的时间序列建模库,专注于采用深度学习方法进行概率预测。支持多种深度学习框架,包括PyTorch和MXNet,提供易于安装和使用的特性。适用于多种应用场景,如商业分析和数据科学。由一个积极的开源社区维护和发展。
pyspi - 多变量时间序列成对交互统计分析Python库
GithubPython库pyspi多变量数据开源项目时间序列分析统计计算
pyspi是一个计算多变量时间序列数据成对交互统计的Python库。它包含数百种方法,涵盖从简单相关性到Granger因果关系等高级算法。该库适用于金融、神经影像等领域的时间序列分析。作为开源项目,pyspi致力于提供全面的时间序列分析工具,并鼓励社区参与开发。
PyAI - 专为Python编程打造的智能助手
AI工具AI开发PyAIPython人工智能机器学习
PyAI是专为Python编程设计的人工智能工具,旨在提升编码体验。它为Python程序员提供智能化辅助功能,包括代码补全、错误检测和性能优化建议。通过使用PyAI,用户可以更高效地编写代码,解决编程问题,并优化工作流程。这款工具融合了先进的AI技术,为Python编程提供量身定制的支持,显著提高编程效率和代码质量。
modeltime - R语言时间序列预测框架 整合机器学习与传统方法
GithubR语言modeltime工作流开源项目时间序列预测机器学习
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
tsflex - 高效灵活的时间序列处理和特征提取Python工具包
GithubPython库tsflex开源项目数据分析时间序列处理特征提取
tsflex是一个Python工具包,用于时间序列处理和特征提取。它支持多变量、多模态时间序列数据,并可与多种处理和特征提取库集成。tsflex采用基于视图的操作,实现低内存占用和快速执行。该工具包提供直观的API,对序列数据几乎没有假设,能处理异步数据。此外,tsflex还具备特征选择、执行时间记录和序列化等高级功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号