Project Icon

DFN2B-CLIP-ViT-L-14

基于CLIP架构的大规模数据集训练图像识别模型

DFN2B-CLIP-ViT-L-14是一个基于CLIP架构的图像识别模型,采用数据过滤网络从128亿图像-文本对中筛选20亿高质量样本进行训练。该模型在多个基准测试中平均准确率达66.86%,可用于零样本图像分类等任务。模型提供OpenCLIP接口,便于开发者使用。DFN2B-CLIP-ViT-L-14体现了大规模数据集和先进算法在计算机视觉领域的应用,为图像理解提供有力支持。

vit-large-patch16-224 - 大型视觉Transformer模型在ImageNet数据集上的图像分类实现
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer大型模型在ImageNet-21k数据集上完成预训练,包含1400万张图像和21,843个分类。模型通过将图像分割为16x16像素块进行处理,支持224x224分辨率输入,并在ImageNet 2012数据集上进行微调。该模型基于PyTorch框架实现,可用于图像分类等视觉任务。
chinese-clip-vit-base-patch16 - 中文数据驱动的多模态对比学习工具
Chinese-CLIPGithubHuggingface图像识别多模态检索开源项目模型深度学习零样本学习
项目通过ViT和RoBERTa实现了中文CLIP模型,支持图像和文本的嵌入计算及相似性分析,具备零样本学习和图文检索功能。该模型在多项基准测试中表现优秀,包括MUGE、Flickr30K-CN等。结合其官方API,用户可轻松实现多场景中的图文转换与识别。详细信息和实施教程可在GitHub获取。
vit-large-patch16-224-in21k - 基于ImageNet-21k预训练的大型Vision Transformer模型
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型计算机视觉预训练模型
该模型是在ImageNet-21k数据集(1400万图像,21843类别)上预训练的大型Vision Transformer (ViT)。它采用Transformer架构,将224x224分辨率的图像分割成16x16的patch序列进行处理。模型可提取强大的图像特征,适用于分类等多种下游视觉任务。用户可直接用于图像嵌入或在特定任务上微调。
CLIP-ReID - 基于CLIP的无标签图像重识别新方法
CLIP-ReIDGithub人工智能图像重识别开源项目视觉语言模型计算机视觉
CLIP-ReID提出了一种无需具体文本标签的图像重识别新方法。该方法基于CLIP视觉-语言模型,结合CNN和ViT架构,并运用SIE和OLP等技术进行优化。在MSMT17等多个基准数据集上,CLIP-ReID展现了领先的性能,为图像重识别领域开辟了新的研究方向。
XLM-Roberta-Large-Vit-B-32 - 多语言CLIP模型的高性能文本编码器
CLIPGithubHuggingfaceXLM-Roberta图像编码器多语言开源项目文本编码器模型
XLM-Roberta-Large-Vit-B-32是一个多语言CLIP模型的文本编码器,支持超过50种语言。该模型与ViT-B-32图像编码器配合,可实现跨语言的图像-文本匹配。在MS-COCO数据集的多语言文本-图像检索任务中,R@10指标表现优异。模型可轻松提取多语言文本嵌入,为跨语言视觉-语言任务提供支持。使用简单,适用于多语言环境下的图像搜索、内容理解等应用场景。
vit_small_r26_s32_384.augreg_in21k_ft_in1k - ResNet与Vision Transformer结合的图像分类模型解析
GithubHuggingfaceImageNetViTtimm图像分类增广正则化开源项目模型
该模型结合ResNet与Vision Transformer(ViT)的特点,专用于图像分类。最初在ImageNet-21k上训练,后在ImageNet-1k上微调,并在JAX中创建,由Ross Wightman移植到PyTorch环境中。模型采用了36.5M参数和27.7M激活,针对384x384图像进行了优化,通过增强和正则化技术提升了处理复杂图像任务的能力,适用于多种图像识别应用。
TinyCLIP-ViT-8M-16-Text-3M-YFCC15M - 高效压缩CLIP模型的跨模态蒸馏方法
CLIPGithubHuggingfaceTinyCLIP图像分类开源项目模型视觉语言预训练跨模态蒸馏
TinyCLIP是一种创新的跨模态蒸馏方法,专门用于压缩大规模语言-图像预训练模型。该方法通过亲和力模仿和权重继承两项核心技术,有效利用大规模模型和预训练数据的优势。TinyCLIP在保持comparable零样本性能的同时,显著减少了模型参数,实现了速度和精度的最佳平衡。这一技术为高效部署CLIP模型提供了实用解决方案,在计算资源受限的场景下尤其有价值。
siglip-so400m-patch14-224 - 增强图像文本任务的性能,探索形状优化模型
GithubHuggingfaceSigLIPWebLI对比学习开源项目模型视觉零样本图像分类
SigLIP通过sigmoid损失函数优化了CLIP模型的图像和文本匹配性能。此模型在WebLi数据集上预训练,可实现更大的批量训练,同时在小批量下表现出色。适用于零样本图像分类和图像文本检索任务,能在不同环境下获得高效结果。该模型在16个TPU-v4芯片上训练三天,而图像预处理中使用标准化和归一化,提升了计算效率。
open_clip - 探索前沿图像与语言对比预训练技术
GithubOpenCLIP图像识别对比学习开源项目零样本学习预训练模型
OpenCLIP是一个先进的开源深度学习项目,专注于OpenAI的CLIP模型的实现和优化。该项目在多样化的数据源和不同的计算预算下成功训练出多个高效能模型,涵盖图像和文本嵌入、模型微调及新模型开发等多个领域。通过增强图像与语言的联合理解能力,OpenCLIP显著推动了人工智能技术的发展,拓宽了其应用领域。
CLIP - CLIP是一种在各种(图像、文本)对上训练的神经网络
CLIPGithubPyTorch图像识别开源项目模型训练自然语言处理
CLIP通过对比学习训练神经网络,结合图像和文本,实现自然语言指令预测。其在ImageNet零样本测试中的表现与ResNet50相当,无需使用原始标注数据。安装便捷,支持多种API,适用于零样本预测和线性探针评估,推动计算机视觉领域发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号