Project Icon

traffic_prediction

交通预测模型与数据集综合评估

这个项目对交通预测领域的多种模型和数据集进行了系统的比较分析。它汇总了近期发表的相关论文,详细介绍了METR-LA、PeMS-BAY等常用公开数据集。项目提供了各模型在主要数据集上的性能对比图表,并探讨了实验设置的差异。同时,它还整理了可公开获取的数据集及其来源信息,为交通预测研究提供了有价值的参考资料。

This list can be considered outdated. For a more up-to-date list, check: https://github.com/lixus7/Time-Series-Works-Conferences

Traffic Prediction

Traffic prediction is the task of predicting future traffic measurements (e.g. volume, speed, etc.) in a road network (graph), using historical data (timeseries).

Things are usually better defined through exclusions, so here are similar things that I do not include:

  • NYC taxi and bike (and other similar datsets, like uber), are not included, because they tend to be represented as a grid, not a graph.

  • Predicting human mobility, either indoors, or through checking-in in Point of Interest (POI), or through a transport network.

  • Predicting trajectory.

  • Predicting the movement of individual cars through sensors for the purpose of self-driving car.

  • Traffic data imputations.

  • Traffic anomaly detections.

The papers are haphazardly selected.

Summary

A tabular summary of paper and publically available datasets. The paper is reverse chronologically sorted. NO GUARANTEE is made that this table is complete or accurate (please raise an issue if you spot any error).

papervenuepublished date# other datsetsMETR-LAPeMS-BAYPeMS-D7(M)PeMS-D7(L)PeMS-04PeMS-08LOOPSZ-taxiLos-loopPeMS-03PeMS-07PeMS-I-405PeMS-04(S)TOTAL open
TOTAL38286333322111195
G-SWaNIoTDI9 May 2311114
SCPTArXiv9 May 2311114
MP-WaveNetArXiv9 May 23112
GTSICLR4 May 211112
FASTGNNTII29 Jan 2111
HetGATJAIHC23 Jan 21112
GST-GATIEEE Access6 Jan 21112
CLGRNarXiv4 Jan 21311
DKFNSIGSPATIAL3 Nov 20112
STGAMCISP-BMEI17 Oct 20112
ARNNNat. Commun11 Sept 2011
ST-TrafficNetELECGJ9 Sept 20112
M2J. AdHoc1 Sept 20112
H-STGCNKDD23 Aug 200
SGMNJ. TRC20 Aug 20112
GDRNNNTU16 Aug 20112
ISTD-GCNarXiv10 Aug 20112
GTSUCONN3 Aug 20112
FC-GAGAarXiv30 Jul 20112
STGATIEEE Access22 Jul 20112
STNNT-ITS16 Jul 200
AGCRNarXiv6 Jul 20112
GWNN-LSTMJ. Phys. Conf. Ser.20 Jun 2011
A3T-GCNarXiv20 Jun 20112
TSE-SCTrans-GIS1 Jun 20112
MTGNNarXiv24 May 20112
ST-MetaNet+TKDE19 May 20112
STGNNWWW20 Apr 20112
STSeq2SeqarXiv6 Apr 20112
DSTGNNarXiv12 Mar 2011
RSTAGIoT-J19 Feb 20112
GMANAAAI7 Feb 2011
MRA-BGCNAAAI7 Feb 20112
STSGCNAAAI7 Feb 2011114
SLCNNAAAI7 Feb 201113
DDP-GCNarXiv7 Feb 200
R-SSMICLR13 Jan 2011
GWNV2arXiv11 Dec 19112
DeepGLONeurIPS8 Dec 19111
STGRATarXiv29 Nov 19112
TGC-LSTMT-ITS28 Nov 1911
DCRNN-RILTrustCom/BigDataSE31 Oct 19112
L-VGAEarXiv18 Oct 1911
T-GCNT-ITS22 Aug 19112
GWNIJCAI10 Aug 19112
ST-MetaNetKDD25 Jul 1911
MRes-RGNN-GAAAI17 Jul 19112
CDSAarXiv23 May 1911
STDGIICLR12 Apr 1911
ST-UNetarXiv13 Mar 191113
3D-TGCNarXiv3 Mar 191113
ASTGCNAAAI27 Jan 19112
PSNT-ITS17 Aug 1810
GaANUAI6 Aug 18211
Seq2Seq HybridKDD19 Jul 180
STGCNIJCAI13 Jul 18112
DCRNNICLR30 Apr 18112
SBU-LSTMUrbComp14 Aug 1711
GRUYAC5 Jan 1711

Performance

METR-LA MAE@60 mins

PeMS-BAY MAE@60 mins

NOTES: The experimental setttings may vary. But the common setting is:

  • Observation window = 12 timesteps

  • Prediction horizon = 1 timesteps

  • Prediction window = 12 timesteps

  • Metrics = MAE, RMSE, MAPE

  • Train, validation, and test splits = 7/1/2 OR 6/2/2

However, there are many caveats:

  • Some use different models for different prediction horizon.

  • Some use different batch size when testing previous models, as they increase the observation and prediction windows from previous studies, and have difficulties fitting it on GPU using the same batch size.

  • Regarding adjacency matrix, some derive it using Gaussian RBF from the coordinates, some use the actual connectivity, some simply learn it, and some use combinations.

  • Some might also add more context, such as time of day, or day of the week, or weather.

  • DeepGLO in particular, since it is treating it as a multi-channel timeseries without the spatial information, use rolling validation,

  • Many different treatment of missing datasets, from exclusion to imputations.

Dataset

Publically available datasets and where to find them.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号